## Orbital Precession in the Schwarzschild and Kerr Metrics

The Schwarzschild Metric A Lagrangian that can be used to describe geodesics is [itex]F = g_{\mu\nu}v^\mu v^\mu[/itex], where [itex]v^\mu = dx^\mu/ds[/itex] is the four-velocity. In the equatorial plane of the Schwarzschild metric this is $$F = (1 – 2m/r)^{-1} (dr/ds)^2 + r^2(d\phi/ds)^2 – (1 – 2m/r)(dt/ds)^2$$ The canonical momenta are [itex]p_\mu = \partial F/\partial v^\nu […]