Chain Definition and 939 Threads

  1. O

    Calculating Transition Probabilities & Expected Values of a Markov Bus Chain

    Homework Statement -A bus is moving along an infinite route and has stops at n = 0, 1, 2, 3, ... -The bus can hold up to B people -The number of people waiting at stop n, Yn, is distributed Poisson(10) and is independent from the number waiting at all the other stops. -At any given stop each...
  2. D

    Understanding the Chain Rule in Vector Calculus for Gradient of Scalar Functions

    Hi. I was looking for a chain rule in vector calculus for taking the gradient of a function such as f(A), where A is a vector and f is a scalar function. I found the following expression on wikipedia, but I don't understand it. It's taking the gradient of f, and applying that to A, and then...
  3. D

    A question on proving the chain rule

    I'm currently reviewing my knowledge of calculus and trying to include rigourous (ish) proofs in my personal notes as I don't like accepting things in maths on face value. I've constructed a proof for the chain rule and was wondering if people wouldn't mind checking it and letting me know if it...
  4. K

    Boundary of a chain, Stokes' theorem.

    Hi, I'm studying multivariable analysis using Spivak's book "calculus on manifolds" When I see this book, one strange problem arouse. Thank you for seeing this. Here is the problem. c0 , c1 : [0,1] → ℝ2 - {0} c : [0,1]2 → ℝ2 - {0} given by c0(s) = (cos2πs,sin2πs) : a circle of radius 1 c1(s) =...
  5. G

    Chain Falling on a Scale: What is the Reading?

    Homework Statement A chain of mass M and length l is suspended vertically with its lowest end touching a scale. The chain is released and falls onto the scale. What is the reading of the scale when a length of chain, x, has fallen? (Neglect the size of individual links.) Homework Equations...
  6. J

    Continuous-Time Markov Chain populations

    Hello, I'm working on a CTMC three-state model to obtain time-dependent populations of each state. S <=> E <=> G I have built a rate matrix for this (diffusion) process. K = \begin{pmatrix} K_{SS} & K_{SE} & K_{SG}\\ K_{ES} & K_{EE} & K_{EG}\\ K_{GS} & K_{GE} & K_{GG} \end{pmatrix} =...
  7. Nathanael

    Tension in the string holding a falling chain

    Homework Statement A uniform chain of length L and [constant] mass per unit length λ is suspended at one A end by an inextensible light string. The other end of the chain B is held at rest at level of end A of the chain. [See image.] Now if the end B of the chain is released under gravity...
  8. MidgetDwarf

    Help understanding the Chain Rule book for derivatives

    After completing calculus 2 with an A I now realize I know nothing of mathematics. We used stewart calculus and I did not really like it, due to a lot of hand waiving. I got an older edition of thomas calculus with analytic geometry 3rd ed, and so far I'm having a blast learning proofs from...
  9. Math Amateur

    MHB Noetherian Modules: ACC, Finite Ascending Chain Definition - Bland

    I am reading Paul E. Bland's book, "Rings and Their Modules". I am trying to understand Chapter 4, Section 4.2 on Noetherian and Artinian modules and need help with the definition of a noetherian module - in particular I need help with the nature of an ascending chain of submodule ...
  10. ubergewehr273

    Tension in the chain from a distance

    Homework Statement A chain of mass ##M## and length ##L## held vertically by fixing its upper end to a rigid support. The tension in the chain at a distance ##y## from the rigid support is Homework Equations ##F=ma## (Newton's 2nd law) The Attempt at a Solution Since net acceleration...
  11. jmay4096

    Need Help Understanding Mechanical Advantage of Chain Mechanism

    Hi guys and girls this my first post! Hope i got it in the right place. I need help understanding the mechanical advantage of this mechanism. The top sprocket is the input power the bottom sprocket is an idler the attachment on the chain is the output. Help!
  12. P

    Calculate the Hamiltonian chain I for Te122-128

    Homework Statement calculate the Hamiltonian chain I for Te122-128[/B] hello I have to calculate The Hamiltonian and the parameters for U(5) for the Te122-128 this is the equation which i have to use but this is the first time i use such an equation. i searched in google but i don't know how...
  13. tokkii

    Chain Dynamics: Solving for Maximum Length

    Hey good people, I am new here and i found that you help people, i hope you can help me with this ive been triyng to solve this for a while but with no luck 1. Homework Statement A chain of mass m0 per unit length is loosely coiled on the floor. If one of the end is subjected to a constant...
  14. H

    MHB Solving Differential Equations

    by chain rule or by homegenious function idk how to start with chain rule or uing homoginus function
  15. L

    Derivative problem -- Chain rule

    Homework Statement Derivative question f=f(x) and x=x(t) then in one book I find \frac{d}{dx}\frac{df}{dt}=\frac{d}{dx}(\frac{df}{dx}\frac{dx}{dt}) =\frac{dx}{dt} \frac{d^2 f}{dx^2} Homework EquationsThe Attempt at a Solution Not sure why this is correct? \frac{dx}{dt} can depend of f for...
  16. H

    MHB Help with Chain Rule: Solve Complex Math Problems

    View image: IMG 20141102 00094 i know chain rule but it more complicated i can't go far with it please any help ??
  17. P

    How Should I Calculate dr² in Differentiation: Directly or by Finding dr First?

    In one physics problem if $$r^2= \lambda^2(1+\frac{m}{2\lambda})^2$$ what is ##dr^2 ?## Should I find ##dr## starting from ##r= \lambda(1+\frac{m}{2\lambda})## first and then square or find ##dr^2## starting from r^2? I know this is a basic question in differentiation using chain rule but it...
  18. P

    What is the Force Between Links in a Falling Chain?

    Homework Statement A uniform chain of length l and mass M contains many links. It is held above a table so that one end is just touching the table top. The chain is released freely. What is the force between the links? What is the time for the topmost link to fall to the table? Homework...
  19. Fredrik

    How can we determine the length of a vector using the ordered pair definitions?

    Mentor's note: These posts were split off from a thread in the textbooks forum. Most of them are about calculus, even though they start off with a non-calculus question. I was too lazy to split them further into two threads ----------------------------------- I don't know what books to...
  20. S

    Find the Tangent Line to g(x) at x=pi using Chain Rule | Math Homework Solution

    Homework Statement Let g(x) = f(sin(2x) f(cos x)), where f(0) = 2, f'(0) = 3, f(-1) = -1/3 , and f'(-1) = -1. Find the equation of the tangent line to the curve of y = g(x) at x = pi. 2. The attempt at a solution Point of Tangent: (pi, 2) g(pi) = f(sin(2pi) f(cos pi)) = f(0 * f(-1)) = f(0) =...
  21. M

    SU(3)-invariant Heisenberg XXX chain

    I'm studying the SU(3) invariant XXX chain as part of my Bachelor's thesis. The monodromy matrix of this system can be written as a 3x3 matrix. We perform a 2x2 decomposition of it and write is as ##T(\mu)=\left( \begin{array}{cc} A(\mu) & B(\mu) \\ C(\mu) & D (\mu) \end{array} \right)## For a...
  22. B

    Calculating Neutrino Energy in PPI Chain

    How would i go about working out the percentage of energy carried away by neutrinos in a PPI chain?
  23. W

    Homology Functor, Prod. Spaces, Chain Groups: Refs Needed

    Hi all, Went to a seminar today, arrived a few minutes late; hope someone can tell me something about this topic and/or give a ref so that I can read on it . I know this is a lot of material; if you can refer me to at least some if, I would appreciate it : 1)Basically, understanding how/why the...
  24. Satvik Pandey

    How Long Will It Take for the Entire Chain to Slide Off the Table?

    Homework Statement There is a chain of uniform density on a table with negligible friction. The length of the entire chain is 1 m. Initially, one-third of the chain is hanging over the edge of the table. How long will it take the chain (in seconds) to slide off the table? Homework EquationsThe...
  25. H

    How is the Chain Rule Applied to Composite Functions of Two Variables?

    Not homework, just having fun. Every reference I find illustrates the chain rule for composite functions of two variables in this way: \begin{align*} B &= f(x,y) \\ x &= g(w,z) \\ y &= h(w,z) \\ \frac{\partial B}{\partial w} &= \left( \frac{\partial B}{\partial x} \cdot \frac{\partial...
  26. M

    Ideal Chain and Vector normalisation

    Homework Statement The questions are in the file. Hint: Part (a) asks you to find the normalization constant for P(N, R). Note that this is a 3D distribution: P(N, R)dRxdRydRz gives you the probability of finding R in a certain "differential volume" of size dRxdRydRz located at the vector...
  27. P

    The Chain Rule and Function Composition

    This is a problem that has been bugging me for ages. I just can't wrap my head around this weird result. I know I went wrong somewhere [as a matter of fact, that was the answer I was hoping for], but most sources, (including, but not limited to, wikipedia), suggest otherwise. I will cut to the...
  28. Y

    Help deriving an equation using chain rule

    Homework Statement How does one get the r" equation from r'? Homework Equations r = distance v = r' = ds/dt a = r'' = dv/dt chain rule, dy/dt = dy/dx * dx/dt The Attempt at a Solution I can easily get to r' from r using the chain rule but how do you derive r" from r'? How do you apply...
  29. J

    On limit of function and proof of chain rule

    Definition of 'Limit of function (f) at x=p' Let E be domain of f and p be a limit point of E. Let Y be the range of f. If there exists q∈E such that for all ε>0 there exists δ>0 such that for all t∈E for which d(t,p)<δ implies d(f(t),q)<ε. Then we say that f(t)->q as t->p. 1) Suppose f...
  30. J

    Logarithm differentiation + chain rule

    For this function y=\sqrt{2ln(x)+1} if I use the chain rule properly, should I be getting this answer? \frac{dy}{dx}=\frac{2}{x} \times \frac{1}{2} \times \frac{1}{\sqrt{2ln(x)+1}} My aim of doing this is to verify that \frac{dy}{dx}=\frac{1}{xy}
  31. P

    Chain Rule, Differentials "Trick"

    I was playing around with some simple differential equations earlier and I discovered something cool (at least for me). Suppose you have y=sin(x^2) \Rightarrow \frac{dy}{dx}=2xcos(x^2) What if, instead of taking the derivative with respect to x, I want to take the derivative with respect to...
  32. Y

    Calculating Work Done to Pull Chain Upward: A 2m Chain of Mass 4kg

    Homework Statement A 2 m long chain of mass 4 kg rests on a table such that 60 cm of it hangs vertically downwards from the table. If the chain has uniform mass distribution, calculate the work done in pulling the entire chain upwards. Ignore the frictional force. Homework Equations...
  33. Greg Bernhardt

    Chain Rule Definition: What Is It?

    [SIZE="4"]Definition/Summary The chain rule is an elementary rule of calculus, but it can be understood without any knowledge of calculus: If a depends on b, and b depends on c, then the rate at which a changes with respect to b times the rate at which b changes with respect to c equals...
  34. E

    The most beautiful chain of equalities I have ever seen

    I was doing some basic analysis of the Dedekind eta function and some Dirichlet series and the following equality just fell out: \sum_{k=1}^\infty\frac{\mu (k)-\varphi (k)}{k}\log \left( 1-\frac{1}{\phi^k} \right) = \prod_{k=1}^\infty \left( 1-\frac{1}{\phi^k} \right)^{2\pi i\frac{\mu...
  35. V

    Chain and Elastic string problem

    Homework Statement A uniform chain of length L hangs from an elastic string of natural length L. The upper end of the string is connected with the ceiling .When the system is in equilibrium , the string stretches by an amount L .At what distance from the lower end of the chain ,the chain...
  36. C

    Mechanics of electric motor to drive shaft by chain drive

    Hi! I would like to change my work truck into an electric hybrid. I have all the electrical portions of this project handled. My big problem is somehow connecting the motor to the drive shaft. The motor is going to sit in the bed of the truck. Its a twelve foot box truck, the motor will sit...
  37. A

    Chain problem to do with Newton's 2nd law.

    Hello, I have a problem to do with a chain. You have a table with infinite drop and a chain of length l. The chain is let off at the end of the table. Assuming a frictionless table, calculate an expression for the speed of the chain. Could anyone help with this please? Best wishes...
  38. G

    Chain Rule Differentiation: Simplifying Trigonometric Expressions

    The question: This is the solution that was given by my teacher Attempt: I understand how the work is done until the 3-4 line. Where did the 1-cos2x disappear to in the 4th line? I know you can use the outside inside method but try as I might, I can't seem to understand how the final...
  39. T

    Derivative of x^2sin(4x) + xcos^(-2x)

    Need to find the Derivative using the chain rule y = x2sin4(x) + xcos-2(x) I am not sure where to start. answer in book is 2xsin4(x) + 4x2sin3(x)cos(x) + cos-2(x) +2xcos-3(x) xsin(x)
  40. Y

    MHB Solving a Tricky Chain Rule Question with Confusing Variables

    Hello, I have a tricky chain rule question, I think understanding it is more difficult than solving. For the function z=f(x,y) it is given that: f_{y}(0,-3)=-2 and \[f_{x}(0,-3)=3\] so for the function \[g(x,y)=f(2\cdot ln(x+y),x^{4}-3y^{2})\] choose the correct answer: (1)...
  41. V

    What is the tension in a rotating chain attached to a wooden disc?

    Homework Statement A metallic chain with a length ‘l’ andd whose ends are joined together is fitted onto a wooden disc as shown in the figure.The disc rotates with a speed of n revolutions per second.Find the tension of the chain T if its mass is m. Homework Equations The Attempt at a...
  42. C

    Finding the Second Partial Derivative of a Multivariable Function

    Homework Statement Show z(x,y) = cos(xy) is a solution of (∂z/∂x)y + (∂z/dy)x = (x+y) ( (∂2z/∂x∂y) + xyz) (question also attached if it makes it clearer) The Attempt at a Solution ∂z= (∂z/∂x)ydx + (∂z/dy)xdy ∂z/∂x = -ysin(xy) ∂z/∂y = -xsin(xy) what does it mean show it...
  43. M

    How Do You Apply the Multidimensional Chain Rule in Variable Transformations?

    hey pf! suppose i have a function ##f( x , y)##. i make a change of variables such that ##z(x,y)## in such a way that now ##f( z , y)##. how do i find $$\frac{\partial f}{\partial y}$$ $$\frac{\partial f}{\partial x}$$ $$\frac{\partial^2 f}{\partial y^2}$$ $$\frac{\partial^2 f}{\partial x}$$...
  44. P

    What is the correct expression for tension in a chain falling through a hole?

    Homework Statement Pls help me with the (d) option of the question asked in the link https://www.physicsforums.com/showthread.php?t=724332&page=1 Correct expression for tension is ρgx/6 (as given in the answer sheet) Homework Equations The Attempt at a Solution...
  45. N

    What is the Lifetime of a Proton in a Solar Mass Star's Core?

    Homework Statement Estimate the lifetime of a proton against fusion to 4He in the center of a Zero-Age-Main-Sequence solar mass star. First calculate the energy generation, εpp in the center of the star from the p-p chain. Then convert this to the number of fusions (conversion of 4 protons...
  46. S

    Partial derivatives chain rule

    Suppose we have a function V(x,y)=x^2 + axy + y^2 how do we write \frac{dV}{dt} For instance if V(x,y)=x^2 + y^2, then \frac{dV}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt} So, is the solution \frac{dV}{dt} = 2x \frac{dx}{dt} + ay\frac{dx}{dt} + ax\frac{dy}{dt} + 2y \frac{dy}{dt}
  47. M

    Observation of a single polymer chain

    Hi, I have a question regarding polymers. You know that polymers, basically, consist of chains of polymers, each chain including number of repeating units (monomer). These chains can be in amorphous or crystalline states. Experimentally, is it possible to fabricate and see a single chain...
  48. K

    Proving C is a Differentiable Function: Inverse Function Theorem & Chain Rule

    Homework Statement Problem: Given C is the graph of the equation 2radical3 * sinpi(x)/3 =y^5+5y-3 Homework Equations (1) Prove that as a set C= {(x,y) Exists at all Real Numbers Squared | 2radical3 * sinpi(x)/3 =y^5+5y-3 is the graph of a function differentiable on all real...
  49. Radarithm

    Kleppner and Kolenkow 5.10 - Falling Chain

    Homework Statement A chain of mass M and length ##\ell## is suspended vertically with its lowest end touching a scale. The chain is released and falls onto the scale. What is the reading of the scale when a length of chain, ##x##, has fallen? (Neglect the size of individual links.)...
  50. B

    Chain Rule of a functional to an exponential

    Homework Statement Suppose f is differentiable on \mathbb R and \alpha is a real number. Let G(x) = [f(x)]^a Find the expression for G'(x) Homework Equations I'm pretty sure that I got this one right, but I really want to double check and make sure. The Attempt at a Solution...
Back
Top