What is Density: Definition and 1000 Discussions

The density (more precisely, the volumetric mass density; also known as specific mass), of a substance is its mass per unit volume. The symbol most often used for density is ρ (the lower case Greek letter rho), although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:




ρ
=


m
V




{\displaystyle \rho ={\frac {m}{V}}}
where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight.
For a pure substance the density has the same numerical value as its mass concentration.
Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure.
To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the density of the material to that of a standard material, usually water. Thus a relative density less than one relative to water means that the substance floats in water.
The density of a material varies with temperature and pressure. This variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object and thus increases its density. Increasing the temperature of a substance (with a few exceptions) decreases its density by increasing its volume. In most materials, heating the bottom of a fluid results in convection of the heat from the bottom to the top, due to the decrease in the density of the heated fluid. This causes it to rise relative to more dense unheated material.
The reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is an intensive property in that increasing the amount of a substance does not increase its density; rather it increases its mass.

View More On Wikipedia.org
  1. L

    Aerosol particles, how do I calculate this?

    Aerosol particles with an average diameter of 5 μm and a density of 1000 kg / m3 are spread to a room with a floor area of 20 m2 and a height of 3.5 m. How long does it take for all 5 μm particles to settle on the floor (dry deposition)? The answer should be 1 hour and 20 minutes.
  2. A

    I The probability density function for the double-slit experiment

    I am desperate. I've scoured the web for the formula for the probability density function for the interference pattern obtained in the double slit experiment with both slits open. So I want to know the probability density function and not the intensity function. I prefer not to have references...
  3. H

    The polarization charge density ##\rho##p in a charged dialectric

    Hi, I have a dialectric cube and inside the center of the cube I have a part where we have Introduced evenly electrons. I have to find the polarization charge density in the 3 regions. I know outside the cube is the vacuum, thus ##\vec{P} = 0## and inside the dialectric (non charged part)...
  4. M

    MHB Calculate the density - Unbiased estimator for θ

    Hey! :giggle: For $n \in \mathbb{N}$ we consider the statistical product model $(X ,(P_{\theta})_{\theta\in\Theta})$ with $X = (0,\infty)^n$, $\Theta = (0,\infty)$ and densities $f_{\theta}(x_i) = \frac{1}{\theta} \textbf{1}_{(0,\theta)}(x_i)$ for all $x_i \in (0,\infty)$, $\theta \in...
  5. nuclearsneke

    Uranium density in fuel meat/kernel

    Howdy partners! I am currently doing some project on Klt40s neutronic simulation (you might have heard of Akademik Lomonosov, the floating npp). But I have encountered a problem with fuel density. The only info that i got that "uranium density IN FUEL MEAT/KERNEL" is 4.5 g/cm3. The Fuel is...
  6. L

    Doubts on Exercise Wording: Energy Density & Poynting Vector

    I have doubts about the wording of the exercise: (1) energy density is ##u=\varepsilon_0 (cB)^2## but since the question asks for mean energy density should I perhaps average over ##cos^2 (\omega t)## (there due to the ##B^2##) and thus use ##<u>=\frac{1}{2}\varepsilon_0 (cB)^2##? (2) it seems...
  7. N

    Current vs Current Density vs Magnetic Field

    If I want to carry 10 A through an 8 AWG wire, I understand that there will be a specific magnetic field around the wire which will decrease as I move outward from the wire radially. Let's consider the center of that wire as coordinates (x,y)=(0,0). An object located at (0,10) would see a...
  8. Shan43

    How is the current density solved for in an electrolyzer unit?

    Hydrogen production rate is typically measured in current density, but what is the area in which the current is divided by to find such a value?
  9. H

    B Peculiar View of Density Matrices: Is There a Problem?

    Hi Pfs , happy new year. I wonder if there is a problem with the manner i see density matrices: I use to consider them without a statistical point of view , just like i do with Hilbert vectors. no more no less. So the points on the Block sphere are only pecular points of those which are inside...
  10. Twigg

    A Software for Converting Spectral Density to Modified Allan Deviation

    Mathematically, you can convert between a power spectral density (PSD) and the modified allan variance as follows: $$\sigma_y^2 (\tau) = \int_0^{\infty} \frac{G_\nu(f)}{\nu^2} \times 32 \frac{(\sin(\pi f \tau/2))^4 \times |\sin(\pi f \tau)|^2}{(\pi \tau f)^4} df$$ I was wondering if anyone knew...
  11. S

    B Electric flux density and confusion about units

    My general understanding of electric flux density is 'electric flux per unit area'. This gives the SI unit N/C. But According the formula of electric flux density, D=eplison*E, the SI unit is C/m^2. How come the dimension in both cases not matching if both are true?
  12. Shan43

    B How to find the current density in an alkaline electrolyzer?

    To my understanding, current density is simply the current flowing through the alkaline electrolyzer divided by the area (the units for current density are A/m^2). But what would the area be in this situation? Is it the area of the electrodes or maybe the area of the electrolyte solution or...
  13. Kaguro

    A Meaning of density of microstates in phase space

    Hello all. I am studying stat mech from Pathria's book. It says a system is completely described by all positions and momenta of all the N particles. This maybe represented by a single point in 6N-D gamma space. So, each point is a (micro)state. Now if we restrict the system (N,V,E to E+ΔE)...
  14. LCSphysicist

    Charge density seen from a moving reference frame S' (SR + EM)

    There are some question involving the statement. One of them is about the charge density in S' frame. It asks to calc it. I thought that i could calculate the electric field in the referencial frame S' and, then, use the formula $$ E = \lambda / 2 \pi \epsilon l $$ In that way, i would obtain...
  15. A

    Calculating a star's density profile

    to solve a) I used The equation of hydrostatic equilibrium $$ \frac{d P}{d r} = - \rho \frac{GM}{r^2} \iff dP = - \rho \frac{GM}{r^2}dr \Longrightarrow \int_{P_c}^0 dP = - \int_0^R \rho \frac{GM}{r^2} dr $$ I replaced M as ## \rho V ## and then I integrated both the left and right-hand sides and...
  16. patric44

    Confirming the dimension of induced charge density of a dielectric

    hi guys our professor asked us to confirm the units of volume charge density ρ and also the surface charge density σ of a dielectric material given by $$ \rho = \frac{-1}{4\pi k} \vec{E}\cdot\;grad(k) $$ $$ \sigma= \frac{-(k-1)}{4\pi} \vec{E_{1}}\cdot\;\vec{n} $$ I am somehow confused about the...
  17. ergospherical

    I Non-"00....0" components of charge density for a spin-s force field

    It is given that the charge density of a particle of charge ##q_0##, world line ##z^{\mu}(\tau)## (and 4-velocity ##u^{\mu}##) in a spin-##s## force field is a ##s##-tensor\begin{align*} T^{\mu \nu \dots \rho}(x^{\sigma}) = q_0 \int u^{\mu} u^{\nu} \dots u^{\rho} \delta^4[x^{\sigma} -...
  18. F

    Engineering Calculating the charge if the electric field density = 0

    Question: Relevant Equations: My attempt: Could someone please confirm my solution?
  19. H

    I Interferences (with diagonal density matrix)

    suppose that elecrons are in a state described by a diagonal density matrix for their spin (we are not interested in their spatial matrix). They are used in the double slit experiment. will we get fringes. I ask the question because when Bob ans Alice share pairs of electrons (the total spin of...
  20. chikchok

    Phonon density of states and density of states of free electrons

    In the following pdf I tried to calculate the density of states of free electrons and phonons. First, I found the free electron DOS in 1D, it turns to be proportional to (energy)^(-1/2) and in 2D it is constant. However, I am not sure I found the DOS for phonons in the second part of the...
  21. M

    Calculating the Density of Kr: A Guide

    Hello. Firstly, I've calculated the density of Kr ( = 3.74 g/dm3), and I know that the p (fluid) = ρ * h * g. And then I've used the following equation: p1*V1 = p2*V2, and therefore: p1*V1 = ρ * h * g * (m/ρ) => p1*V1 = h * g * m. (h = 3.0153 m) Is that correct? Please, how could I calculate...
  22. Gustav

    Calculating Bound Charge Density & Polarization

    I have already calculated the polarisation that is $$ \mathbf{P} = \frac{\rho_f r}{2} \left( 1 - \frac{\epsilon_0}{\epsilon} \right) \hat{r} . $$ I tried to use the following formulas to calculate the density bound charges. For the surface bound charge I got: $$ \sigma_{b1} = \mathbf{P} \cdot...
  23. Ugnius

    Current density in a wire that is being used to charge a capacitor

    Somehow this answer is incorrect , but i realize that even numbers are hipothetical , 45 coulumbs is too much charge , what is wrong in my calculations?
  24. A

    Ohm's law, current density, free & bound charge

    Hello, I wonder if you could give me some advice to how solve this question. What I was thinking to solve it was to determine J by using Ohms law, ## \vec J = \sigma_{\alpha} \vec E ## I already determined the E field for for the sphere, I got it from a) ("a)" was to determined all the bound...
  25. CynicusRex

    Chemistry Calculating the mass percent from a given volume % and density

    [I've solved b, but can't figure out a for the life of me. I have a couple of attempts, but it's just nonsense, it's like I've short circuited.]
  26. PainterGuy

    Random variable and probability density function

    Hi, I was trying to solve the attached problem which shows its solution as well. I cannot understand how and where they are getting the equations 3.69 and 3.69A from. Are they substituting the values of θ₁ and θ₂ into Expression 1 after performing the differentiation to get equations 3.70 and...
  27. brotherbobby

    Dropping anchor from the barge

    (I must confess before I can begin that I found this problem difficult to understand, for reasons I will make clear below. I know it appears simple.) Attempt : Let me begin by drawing the problem situation alongside, to the best I understand. We can see that the in both cases (i) or (ii), the...
  28. V

    Volume density vs Surface density of charge distribution

    This doubt is confusing to me. I know it's something to do with conductors and insulators, but cannot explain. Conductors have mobile/free electrons unlike insulators. Having free electrons doesn't seem to explain this difference of charge distributions.
  29. Buzzer33

    Help with Mathematical Description & Calculations of Space Charge Density

    Guys I have Problems with this task The arrangement consists of a point charge Q at a distance (x0, y0,0) from the origin and two perfectly conductive surfaces in the (x, z) and (y, z) plane a) Mathematical description of the space charge density p of the original and mirror charge using the...
  30. rudransh verma

    B Understanding Flux: The Measure of Field Lines Passing Through a Surface

    Phi= int(E.da) through a surface S is a measure of “number of field lines” passing through S. I put this in quotes because of course we can only draw a representative sample of field lines. The total number would be infinite. But for a given sampling rate the flux is proportional to the number...
  31. MengMei

    Charge Density on a Conductive Slab

    Okay, so I tried thinking of this as like a simple balancing of equations. There's an infinite sheet of charge on the left and a conductor on the right with some charge already on it. My thought process was that the side nearer to the charged sheet would have 4.7 more μC/m2 than the far side...
  32. S

    Magnetic energy density, and pressure due to magnetic force

    Hi, The problem I am working on requires me to work out the the pressure on the outer conductor of a coaxial cable due to the current on the inner one. This cable carries a dc current of 5000 Amps on the inner wire of radius 2 cm. The outer cylindrical wire of radius 5cm carries the return...
  33. bboo123

    I Exploring the Impact of Dielectrics on Electric Flux Density

    In the 7th edition of the book "Elements of Electromagnetics by Matthew N. O. Sadiku" On page 190 the author goes on to say: "We now consider the case in which the dielectric region contains free charge. If ##\rho_v## is the volume density of free charge, the total volume charge density...
  34. Haorong Wu

    I Derivatives for a density operator

    Hi. Suppose I have a state ##\left | \psi (0)\right >=\sum_m C_m \left | m\right >## evolving as $$\left | \psi (0+dz)\right>=\left | \psi (0)\right >+dz \sum_iD_i\left | i\right >=\sum_m C_m \left | m\right >+dz \sum_iD_i\left | i\right >=\sum_m( C_m+dz D_m)\left |m\right >.$$ Then the density...
  35. A

    I Showing Determinant of Metric Tensor is a Tensor Density

    I'm trying to show that the determinant ##g \equiv \det(g_{ij})## of the metric tensor is a tensor density. Therefore, in order to do that, I need to show that the determinant of the metric tensor in the new basis, ##g'##, would be given by...
  36. F

    Pixelation of bitmap images (pixel size, pixel density, resolution)

    Hello Forum, I am attempting to understand what causes pixelation when a bitmap (jpg, png, etc.) image is enlarged. Bitmap images have a resolution indicated as the number of pixels along the width and height of the image itself. On the other hand, computer monitors also have a physical...
  37. Gere

    I Are density matrices part of a real vector space?

    Is the following a correct demonstration that quantum mechanics can be done in a real vector space? If you simply stack the entries of density matrices into a column vector, then the expression ##\textrm{Tr}(AB^\dagger)## is the same as the dot product in a complex vector space (Frobenius inner...
  38. N

    A Probability Density Function: Converting Experimental Observations to PDF

    Hi All I am currently doing Master in data science. I came across the function PDF probability density function which is used to find cumulative probability(range) of a continuous random variable. The PDF probability density function is plotted against probability density in y-axis and...
  39. Ranku

    I Energy-momentum tensor as energy density

    Can the energy-momentum tensor of matter and energy be cast in terms of energy density of matter and energy, similar to how the energy-momentum tensor of vacuum energy can be cast in terms of the energy density of vacuum energy?
  40. Shreya

    Flux density and Divergence of Electric field

    I think Flux density is flux/Volume. Or is it flux/ Area Please be kind to help
  41. P

    I Questions about Density Parameter and Critical Density

    Hi,I'm reading about critical density and I'm a bit confused about it's derivation.Solving the Einstein equations using the cosmological principle we get the (second) Friedmann equation: $$ \bigg( \frac{\dot{a}}{a} \bigg)^2...
  42. N

    A Relationship between energy density and cosmological constant

    According to the wiki entry on Planck units, https://en.wikipedia.org/wiki/Planck_units, the energy density of the universe, 1.8 × 10−123, is 1/16th the cosmological constant, 2.9 × 10−122. Is there a theoretical reason for this precise relationship?
  43. stephen8686

    A Jaynes-Cummings Density Operator Evolution

    I am studying two level atoms interacting with fields in order to study Dicke Superradiance. From Loudon's book, the Optical Bloch Equations for a two level atom interacting with a field say (with rotating wave approx): $$\frac{d\rho_{22}}{dt}=- \frac{d\rho_{11}}{dt} = -\frac{1}{2}...
  44. S

    I How to calculate expectation and variance of kernel density estimator?

    This is a question from a mathematical statistics textbook, used at the first and most basic mathematical statistics course for undergraduate students. This exercise follows the chapter on nonparametric inference. An attempt at a solution is given. Any help is appreciated. Exercise: Suppose...
  45. M

    I The Acceleration and the density of galaxies

    In the Lambda-CDM model, the density of galaxies goes decreasing and should even vanish in the far future. I would be grateful if someone could point me to a paper where this is calculated.
  46. Paulpaulpa

    Spacetime translations and general Lagrangian density for Field Theory

    In Sydney Coleman Lectures on Quantum field Theory (p48), he finds : $$D\mathcal{L} = e^{\mu} \partial _{\mu} \mathcal{L}$$ My calulation, with ##\phi## my field and the variation of the field under space time tranlation ##D\phi = e^{\mu} \frac{\partial \phi}{\partial x^{\mu}}## ...
  47. Haorong Wu

    I Improper density matrix with negative eigenvalues

    Hi, there. I am working with a model, in which the dimension of the Hilbert space is infinite. But Since only several states are directly coupled to the initial state and the coupling strength are weak, then I only consider a subspace spanned by these states. The calculation shows that the...
Back
Top