1. Let R be a relation on X that satisfies
a) for all a in X, (a,a) is in R
b) for a,b,c in X, if (a,b) and (b,c) in R, then (c,a) in R.
Show that R is an equivalence relation.
2. In order for R to be an equivalence relation, the following must be true:
1) for all a in X, (a,a) is...