The generators ##\{ L^1, L^2 , L^3 , K^1 , K^2 , K^3 \}## of the Lorentz group satisfy the Lie algebra:
\begin{array}{l}
[L^i , L^j] = \epsilon^{ij}_{\;\; k} L^k \\
[L^i , K^j] = \epsilon^{ij}_{\;\; k} K^k \\
[K^i , K^j] = \epsilon^{ij}_{\;\; k} L^k
\end{array}
It has the Casimirs
C_1 =...