Double integral on triangle using polar coordinates

sxyqwerty
Messages
2
Reaction score
0

Homework Statement


Let R be the triangle defined by -xtanα≤y≤xtanα and x≤1 where α is an acute angle sketch the triangle and calculate
∫∫R (x2+y2)dA using polar coordinates
hint: the substitution u=tanθ may help you evaluate the integral

Homework Equations

The Attempt at a Solution


so the triangle has points (0,0) (1, xtanα) (1, -xtanα)
and r=1/cosα=secα
and I am stuck from here i don't know how to find the θ value of the polar coordinate
 
Physics news on Phys.org
The polar angle does not have one value. Like the radial coordinate r, it is an integration variable and you must integrate over it. The question you need to answer first is: What is the integral you need to solve and what are the integration boundaries?
 
i got ∫∫R r3drdθ i get that the boundary for r is 0 to secα but I am stuck after this...
i get that the polar angle is supposed to be multiple values (i.e. in a general form like θ or α) but i seriously have no clue on how to approach this further

from the original set of data i get ∫01-xtanαxtanαx2+y2dA
 
Last edited:
sxyqwerty said:
i get that the boundary for r is 0 to secα

This is wrong. I suggest you draw the triangle on a piece of paper and try to figure out which limits your integration variables have. Think about what the angles ##\alpha## and ##\theta## represent.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top