Finding electric potential given a cylindrical configuration

AI Thread Summary
To find the electric potential between two concentric cylinders, start by applying Gauss's Law to determine the electric field E in the region between the cylinders. The relationship between electric field and potential is crucial, as E can be expressed in terms of charge and area. The electric field can be derived as E = λ/(2πεr) for a cylindrical configuration, where λ is the linear charge density. The potential difference can then be calculated using the integral of E, leading to the form V(r) = constant1 - constant2 ln(r). Understanding the Gaussian surface and charge enclosed is essential for accurate calculations.
carloz
Messages
4
Reaction score
0

Homework Statement



You have two concentric cylinders. The inner cylinder has radius a and the external cylinder has radius b. Find the electric potential in the region between the cylinders.

[Hint: The final equation takes the form V(r) = constant1 - constant2 ln(something) ]


Homework Equations



I think:
Gauss's law: \Phi=EA=q/ε
Coulomb's law: E=q/(4πεr^2)

The Attempt at a Solution



I really don't know.
 
Physics news on Phys.org
Start by finding the electric field E between the two cylinders using Gauss's Law.

How is E related to the potential?
 
Okay

So

EA=q/ε

E=q/(εA)

A=2πrL

dA=2πLdr

dE=q/(ε2πLdr)

E = ∫(limits a and b) q/(ε2πLdr) = q/(ε2πL) ∫(limits a and b) 1/dr

Am I on the right track? If so, how to evaluate ∫(1/dr) ?

Thank you.
 
Do you know the answer to this? I am just learning this material also, so I don't know if I am thinking through it correctly. But the outer shell should be irrelevant as the electric field is going to be zero for any point inside it assuming it is infinitely long, correct? For the electric field at r distance from the center of cylinder with radius a, would its magnitude be λ/(2πεr) (derived with Gauss's law)? If so, you would end up with Δv(r) = v(r) (taking v_i = 0) = λln(a)/(2πε) - λln(r)/(2πε) where a <= r <= b, λ = q/l. But I have no idea if that is correct.
 
carloz said:
Okay

So

EA=q/ε

E=q/(εA)

A=2πrL

dA=2πLdr

dE=q/(ε2πLdr)

E = ∫(limits a and b) q/(ε2πLdr) = q/(ε2πL) ∫(limits a and b) 1/dr

Am I on the right track? If so, how to evaluate ∫(1/dr) ?

Thank you.
No. First off, what's your Gaussian surface and what expression is equal to the amount of charge enclosed in it?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top