Flux integral over a parabolic cylinder

Click For Summary

Homework Help Overview

The problem involves evaluating a flux integral over a surface defined by a parabolic cylinder and the x-y plane, with a vector field given by \(\textbf{F}=(z^2-x)\textbf{i}-xy\textbf{j}+3z\textbf{k}\). Participants are exploring the implications of the surface boundaries and the correct evaluation of the integral.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss splitting the flux integral into separate surfaces and evaluating them in Cartesian coordinates. There are questions regarding the correct components of the vector field and the normals used for the surface integrals. Some participants express confusion about the treatment of the flux integral at specific boundaries.

Discussion Status

There is an ongoing examination of the calculations and assumptions made regarding the vector field and the normals at the boundaries. Some participants have provided clarifications and corrections, while others are still seeking understanding of why certain values are ignored in the context of the problem.

Contextual Notes

Participants note potential errors in the original problem setup, including limits of integration and the treatment of boundary surfaces. There is a recognition that the problem may exclude certain surfaces, which is under discussion.

Forcefedglas
Messages
26
Reaction score
0
Homework Statement
Evaluate ##\int\int_S \textbf{F}\cdot\textbf{n} dS ## where ##\textbf{F}=(z^2-x)\textbf{i}-xy\textbf{j}+3z\textbf{k}## and S is the surface region bounded by ##z = 4-y^2, x=0, x=3## and the x-y plane with ##\textbf{n}## directed outward to S.

The attempt at a solution

I've worked out the correct answer but can't seem to fully understand why that is. I tried splitting up the flux integral into 3 separate surfaces: 1 for the parabola at x=3, another for the parabola at x=0, and lastly a parametric surface between them. At each parabola I just evaluated the flux integral in cartesian coordinates, which were ##\int_{-2}^2 \int_0^{4-y^2}(2y\textbf{j}+\textbf{k})\cdot((z^2-x)\textbf{i}-xy\textbf{j}+3z\textbf{k})##, which worked out to be 256/5 and 0, at x=0 and x=3 respectively.

I parameterized the parabolic cylinder as ##\mu\textbf{i}+\lambda\textbf{j}+(4-\lambda^2)\textbf{k}##, so the flux integral for this was ## \int_0^2 \int_0^3(2\lambda\textbf{j}+\textbf{k})\cdot((z^2-x)\textbf{i}-\mu\lambda\textbf{j}+(12-3\lambda^2)\textbf{k})d\mu d\lambda## which works out to be 48, which is the correct answer. This might seem like a dumb question but I've been staring at it for hours and can't understand why the value of the flux integral at the x=0 parabola is ignored. I considered the possibility that it excludes the surfaces at x=0 and x=3 but similarly worded questions did not do this. Any help/tips will be appreciated, thanks!
 
Last edited:
Physics news on Phys.org
Forcefedglas said:
Homework Statement
Evaluate ##\int\int_S \textbf{F}\cdot\textbf{n} dS ## where ##\textbf{F}=(z^2-x)\textbf{i}-xy\textbf{j}+3z\textbf{k}## and S is the surface region bounded by ##z = 4-y^2, x=0, x=3## and the x-y plane with ##\textbf{n}## directed outward to S.

The attempt at a solution

I've worked out the correct answer but can't seem to fully understand why that is. I tried splitting up the flux integral into 3 separate surfaces: 1 for the parabola at x=3, another for the parabola at x=0, and lastly a parametric surface between them. At each parabola I just evaluated the flux integral in cartesian coordinates, which were ##\int_{-2}^2 \int_0^{4-y^2}(2y\textbf{j}+\textbf{k})\cdot((z-x^2)\textbf{i}-xy\textbf{j}+3z\textbf{k})##, which worked out to be 256/5 and 0, at x=0 and x=3 respectively.
First, is the x-component of the vector field ##z^2-x## or ##z-x^2##? You used the wrong normal for evaluating the surface integrals on the x=0 and x=3 planes.

I parameterized the parabolic cylinder as ##\int_0^2\int_0^3\mu\textbf{i}+\lambda\textbf{j}+(4-\lambda^2)\textbf{k}##, so the flux integral for this was ##(2\lambda\textbf{j}+\textbf{k})\cdot((z-x^2)\textbf{i}-\mu\lambda\textbf{j}+(12-3\lambda^2)\textbf{k})d\mu d\lambda## which works out to be 48, which is the correct answer. This might seem like a dumb question but I've been staring at it for hours and can't understand why the value of the flux integral at the x=0 parabola is ignored. I considered the possibility that it excludes the surfaces at x=0 and x=3 but similarly worded questions did not do this. Any help/tips will be appreciated, thanks!
There seems to be numerous errors or typos in what you've written here. Could you please clean it up?
 
vela said:
First, is the x-component of the vector field ##z^2-x## or ##z-x^2##? You used the wrong normal for evaluating the surface integrals on the x=0 and x=3 planes.There seems to be numerous errors or typos in what you've written here. Could you please clean it up?

I fixed up most of the errors I think (left i component in terms of z and x since it goes to 0 anyway). The x component was supposed to be ##z^2-x##. Would the correct normals in the x=0 and x=3 planes be the unit vector i at x=3 and -i at x=0?
 
I think you meant for the limits for ##y## on the last integral to be ##-2## and ##2##. Yes, the normals are ##\pm \hat i##. I get the same result you do integrating over just the curved part of the surface. With the three flat surface included, I get 16 for the total flux.
 
vela said:
I think you meant for the limits for ##y## on the last integral to be ##-2## and ##2##. Yes, the normals are ##\pm \hat i##. I get the same result you do integrating over just the curved part of the surface. With the three flat surface included, I get 16 for the total flux.

Guess the given answer must be off then, thanks for clearing that up.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
2K