Relation between pressure and volume when heating a gas

Click For Summary
Heating a gas at constant pressure requires more energy than heating it at constant volume due to the work done by the gas as it expands. When pressure is constant, the volume must increase, allowing the gas to do mechanical work, which consumes additional energy. In contrast, if the volume is held constant, the pressure increases as the temperature rises, requiring less energy input. The relationship is explained by the equation PV = nkT, which illustrates how pressure, volume, and temperature are interrelated. Understanding this principle clarifies why more energy is needed for heating at constant pressure compared to constant volume.
ElectricRay
Messages
73
Reaction score
18
Hi all,

A happy 2018 for all PF members.

I have a question. I am trying to understand some basic principle of thermodynamics. My book tells me tge following:

"Heating of a gas at a constant pressure uses more heat as when heating the same gas a constant volume"

How do i interpret this? I find this paradoxical. If I visualize this for myself I come at the following:

I have a gas this gas is e.g. in a box which I will heat up to e certain temperature. Let say it gets 10 deg C higher. If the pressure is maintained constant (which i don't understand first of all, i thought that the pressure would increase as I heat the gas) I need more energie (joules) as when I heat up the gas to the same 10 deg C high but with a constant volume.

This all confuses me a lot. Can anybody help me understand this phenomena?

Thanks in advance

Raymond
 
Science news on Phys.org
ElectricRay said:
If the pressure is maintained constant (which i don't understand first of all, i thought that the pressure would increase as I heat the gas)
If pressure is maintained constant then volume must be increasing. For instance, you are heating a gas in a cylinder with a piston at one end. The heated gas did mechanical work to move the piston against a [nearly] equal resistance. That takes energy.
 
  • Like
Likes ElectricRay
We always have PV = nkT. If the volume is held constant, then the pressure will increase as the temperature is increased. In order to hold the pressure constant, the volume must be allowed to increase as the temperature increases. We could do this, for example, by having a chamber with a piston held in place with a constant force, like a weight pushing down on it. Then as the temperature increases, the piston will move up, keeping the pressure constant and allowing the volume to increase. In this case, the gas will do work on the moving piston, so you have to put in more energy than in the case where the volume stays constant.
 
  • Like
Likes ElectricRay
jbriggs444 said:
If pressure is maintained constant then volume must be increasing. For instance, you are heating a gas in a cylinder with a piston at one end. The heated gas did mechanical work to move the piston against a [nearly] equal resistance. That takes energy.
Clear that feels intuitively but now when volume is maintained constant. So we block the piston as in your example. In that case the pressure will increase, right?

But why the amount of energy needed when one maintains pressure constant is more as when we keep the volume constant, hence delta T is the same in both cases.
 
phyzguy said:
We always have PV = nkT. If the volume is held constant, then the pressure will increase as the temperature is increased. In order to hold the pressure constant, the volume must be allowed to increase as the temperature increases. We could do this, for example, by having a chamber with a piston held in place with a constant force, like a weight pushing down on it. Then as the temperature increases, the piston will move up, keeping the pressure constant and allowing the volume to increase. In this case, the gas will do work on the moving piston, so you have to put in more energy than in the case where the volume stays constant.
Ahhhh ok yes this makes sense. Thanks guys I appreciate the help so fast.
 
Hello, We have a thermal camera and its purpose is to detect hot spots at different distances. We made an experiment with a JPEG picture and we noticed the following: At the same distance, one object at 600 degrees and an object at 38 degrees (human body) have the same pixel intensity (255 in grayscale). The image adjusted when the 600 degrees object exited the scene (parts of the human body and background became brighter). We will make a detection algorithm and we need to make sure only...
Been around 40 years since I took basic physics in college and while I remember doing some examples of insulation values / energy conduction, I doubt I could to the math now even if I could find the formulas. I have some some corrugated plastic sheet (think of the plastic signs you see on the side of the road) that is used in bee hives. Also have some used in a green house though a bit different in dimensions than this example but the general approach should still apply. Typically, both...
Problem: You’re an Uber driver with a Tesla Model 3. Today’s low: 30F, high: 65F. You want to reach a USD$ profit target in the least number of hours, but your choices could have added cost. Do you preheat the battery only when you are headed to the charging station (to increase the charging rate by warming the battery — however the battery might not be “warm enough” when your reach the charger and thus slower charging rates), or do you always “navigate to the charger” the entire day (which...