Specific heat of solid of one dimensional quartic oscillators

sabinscabin
Messages
11
Reaction score
0

Homework Statement



A system consists of N very weakly interacting particles at temperature T sufficiently high so that classical stat mech is applicable. Each particle has mass M and is free to perform one dimensional oscillations about its equilibrium position. Calculate the heat capacity of this system of particles if the restoring force is proportional to x^3.


Homework Equations



spring constant = q
energy of one oscillator E = p^2 / 2m + qx^4 / 4

partition function: Z = integral ( exp(-BE ) dx dp
both integrals from -inf to +inf

where B = 1/kT

The Attempt at a Solution



Cv = N d/dT (average E)

average E = - d / dB [ ln Z ]
Z = integral [exp (-Bp^2/2m) dp ] * integral [exp (-Bqx^4/4) dx ]

the first integral is simply sqrt(pi * 2m / B )
I have no idea how to find the integral of exp(-x^4), so I can't find this partition function.
 
Physics news on Phys.org
Try the substitution t=\frac{\beta q x^4}{4} and make use of the gamma function:

\Gamma(z)\equiv \int_0^\infty t^{z-1}e^{-t}dt
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top