Condition Definition and 587 Threads
-
I How did they reach this conclusion regarding the coefficients?
the solution for the infinite num case the problem is that i only could reach the condition that the coefficients are zero when i substituted n=0 , i am reaching two independent variables i am not sure what am i doing wrong that's preventing me from getting a similar result to them "that...- kirito_01
- Thread
- Condition Independent Variables Wave
- Replies: 11
- Forum: Classical Physics
-
S
Condition such that the symmetric matrix has only positive eigenvalues
My attempt: $$ \begin{vmatrix} 1-\lambda & b\\ b & a-\lambda \end{vmatrix} =0$$ $$(1-\lambda)(a-\lambda)-b^2=0$$ $$a-\lambda-a\lambda+\lambda^2-b^2=0$$ $$\lambda^2+(-1-a)\lambda +a-b^2=0$$ The value of ##\lambda## will be positive if D < 0, so $$(-1-a)^2-4(a-b^2)<0$$ $$1+2a+a^2-4a+4b^2<0$$...- songoku
- Thread
- Condition Eigenvalues Matrix Positive Symmetric Symmetric matrix
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
POTW A Linear Operator with Trace Condition
Let ##V## be a finite dimensional vector space over a field ##F##. If ##L## is a linear operator on ##V## such that the trace of ##L\circ T## is zero for all linear operators ##T## on ##V##, show that ##L = 0##.- Euge
- Thread
- Condition Linear Linear operator Operator Trace
- Replies: 1
- Forum: Math POTW for University Students
-
M
I Understanding Diffraction Condition in Kittle's Intro to Solid State Physics
I am going over the diffraction condition section in Kittle's Introduction to Solid State Physics physics and I am having a hard time understanding why the phase difference angle for the incident wave is positive while the phase angle difference for the diffracted wave is negative. Thank you...- Mart1234
- Thread
- Condition Diffraction Intro Physics Solid Solid state Solid state physics State
- Replies: 1
- Forum: Atomic and Condensed Matter
-
I Understanding Euler Method: Finding Initial Condition of y(0)=1
The Euler method is straightforward to me; i.e ##y_{n+1}=y_n+ hf(t_0, y_0)## where the smaller the steps i.e ##h## size the better the approximation. My question is 'how does one go about in determining the initial condition ##y(0)=1## in this problem? am assuming that this has to be a point...- chwala
- Thread
- Condition Euler Euler method Initial Method
- Replies: 7
- Forum: Differential Equations
-
J
Does induced drag theory include the Lift = Weight condition?
This is usual induced drag diagram. I have 2 questions: From Kutta–Joukowski theorem Fr is always perpendicular to effective airflow. 1. Does it mean for case without effective airflow(zero induced downward velocity), Fr is perpendicular to freestream airflow,so drag is zero? When effective...- Jurgen M
- Thread
- Condition Drag Induced Lift Theory Weight
- Replies: 10
- Forum: Aerospace Engineering
-
Mathematica Select[ list, condition] with a parameter in the condition
This works: a=0.4 Select[ list, #[[2]] > a-0.025 && #[[2]] < a+0.025 & ] {{401803.,0.42485,3.33299,0.776904,0.277985},{402066.,0.40333,9.23462,0.381478,0.397121},{402872.,0.41899,3.47237,0.742789,0.27385}} But why doesn't this work? :- Select[ list, #[[2]] > b - 0.025 && #[[2]] < b +...- Swamp Thing
- Thread
- Condition List Parameter
- Replies: 5
- Forum: MATLAB, Maple, Mathematica, LaTeX
-
M
I When and how can I apply Born rigidity condition?
Hello, I try to better understand how and when I can apply the Born rigidity condition. So, for the following example: We've two space probes (Pa and Pb), that travel at an exact equal and same proper acceleration. At a given time tb0 in Pb, and as measured by Pb, the distance is Lba0 (it's...- member 728827
- Thread
- Accelerated motion Apply Condition Special relitivity
- Replies: 40
- Forum: Special and General Relativity
-
A
Solution to Differential Equation with Limit Boundary Condition
The original differential equation is: My solution is below, where C and D are constants. I have verified that it satisfies the original DE. When I apply the first boundary condition, I obtain that , but I'm unsure where to go from there to apply the second boundary condition. I know that I...- a1234
- Thread
- Boundary Boundary condition Condition Differential Differential equation Limit
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
V
Probability that A will win given a condition
I tried to solve this problem using the chart given below. But I get a different answer of ##\frac {2}{3}## rather than ##\frac {3}{4}##. Maybe the answer given is incorrect? I determine from the chart the number of ways in which A could win given that A has already won 2 of first 3 points...- vcsharp2003
- Thread
- Condition Probability
- Replies: 15
- Forum: Precalculus Mathematics Homework Help
-
I Bragg condition and Bloch states
I'm reading about Bloch states, these the are states of electrons in a periodic potential. What i know is that the electron in a Bloch state is shared between many ions and it is a stationary state. However, for a 1-dimensional model I've read that at the edge of the first Brillouin zone, when...- Simobartz
- Thread
- Bragg Condition States
- Replies: 7
- Forum: Atomic and Condensed Matter
-
H
Vector space of functions defined by a condition
##f : [0,2] \to R##. ##f## is continuous and is defined as follows: $$ f = ax^2 + bx ~~~~\text{ if x belongs to [0,1]}$$ $$ f(x)= Ax^3 + Bx^2 + Cx +D ~~~~\text{if x belongs to [1,2]}$$ ##V = \text{space of all such f}## What would the basis for V? Well, for ##x \in [0,1]## the basis for ##V##...- Hall
- Thread
- Basis Condition Dimension Functions Space Vector Vector space Vector spaces
- Replies: 58
- Forum: Calculus and Beyond Homework Help
-
M
Dynamical Systems - Chaos: Stability condition for a 2-cycle system
Hi, (This question is part of the same example as a previous post of mine, but I have a question about a different part of it) I was looking at a question from an exam for a course I am self-teaching. There is a sub-question which asks us to find the values of a parameter for which the 2-cycle...- Master1022
- Thread
- Chaos Condition Dynamical systems Stability System Systems
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
I Correct Formula for "No Fringe Condition" (Michelson Interferometer)
In two different textbooks, there are two different formulas with different derivation styles for the "No Fringe Formation" Condition. In approach (a), they use an amalgamation of bright and dark for 2 wavelengths having very minute difference in the following manner: 2dcostheta=n*λ(1)... -
V
Finding A Relative Condition Number
Hm I'm new to these concepts, and I want to make sure I am on the right track, would the relative condition number be: k=(x/2)((1/sqrt(x+1))-(1/sqrt(x))(1/(sqrt(x+1)-sqrt(x))). Or would I have to solve the limit as x approaches 0? Thank you.- ver_mathstats
- Thread
- Condition Relative
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
P
A Condition for a spacelike surface to be achronal
A hypersurface being spacelike (a local condition - every tangent to the surface being spacelike) does not preclude that points on it cannot be causally connected (one is in the future or past light cone of the other). A classic example is a spacelike spiral surface. Typically, for foliating a...- PAllen
- Thread
- Condition Surface
- Replies: 16
- Forum: Special and General Relativity
-
Motion of Rolling Cylinder in Fixed Cylinder: Confusing Constraint Condition
The problem is a classical one, basically to find the equations of motion of cylinder of radius a inside a fixed cylinder of radius b, the cylinder that rolls rotate about its own axis in such way that it does not skid/slip. Now, the thing that is making myself confused is the constraint...- LCSphysicist
- Thread
- Condition Confusing Constraint Cylinder Motion Rolling
- Replies: 2
- Forum: Introductory Physics Homework Help
-
A Knill-Laflamme condition Shors code
The K-L condition has projection operators onto the codespace for the error correction code, as I understand it. My confusion I think comes primarily from what exactly these projections are? As in, how would one find these projections for say, the Shor 9-qubit code?- steve1763
- Thread
- Code Condition Information theory Quantum information
- Replies: 1
- Forum: Quantum Physics
-
MHB 1.4.1 complex number by condition
1.4.1 Miliani HS Find all complex numbers x which satisfy the given condition $\begin{array}{rl} 1+x&=\sqrt{10+2x} \\ (1+x)^2&=10+2x\\ 1+2x+x^2&=10+2x\\ x^2-9&=0\\ (x-3)(x+3)&=0 \end{array}$ ok looks these are not complex numbers unless we go back the the...- karush
- Thread
- Complex Complex number Condition
- Replies: 13
- Forum: General Math
-
B
Boundary condition: null traction on the boundary of an elastic block
Hi everyone, I'm trying to understand the rationale behind the boundary condition for the problem "Finite bending of an incompressible elastic block". (See here from page 180).Here we have as Cauchy Stress tensor (see eq. (5.82)): ##T = - \pi I + \mu (\frac{l_0^2}{4 \bar{\theta}^2 r^2} e_r...- bobinthebox
- Thread
- Block Boundary Boundary condition Cauchy stress Condition Continuum mechanics Elastic Stress and strain Traction
- Replies: 8
- Forum: Mechanics
-
Laplace's Equation and Boundary Condition Problem
I really have no idea as to how to attack the problem in the first place. I am here to ask for some generous help on how to start. The figure is shown below for reference.- HansBu
- Thread
- Boundary Boundary condition Condition Laplace's equation
- Replies: 18
- Forum: Advanced Physics Homework Help
-
C
I The diffusion equation with time-dependent boundary condition
Hi everyone, I am trying to solve the 1 dimensional diffusion equation over an interval of 0 < x < L subject to the boundary conditions that C = kt at x = 0 and C = 0 at x = L. k is a constant. The diffusion equation is \frac{dC}{dt}=D\frac{d^2C}{dx^2} I am using the Laplace transform method...- Corribus
- Thread
- Boundary Boundary condition Condition Diffusion Diffusion equation
- Replies: 8
- Forum: Differential Equations
-
Condition to three vectors being collinear
Now i am rather confused, the answer apparently is that ##(w-u) = \lambda(u-v)## But, i could find a way that disprove the answer, that is: Be u v and w vectors belong to R2, a subspace of R3: What do you think? This is rather strange.- LCSphysicist
- Thread
- Condition Vectors
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
L
I Quasilinear Equation but with non-zero initial condition?
The way I was taught to solve many quasi-linear PDEs was by harnessing the initial condition in the characteristic method at ##u(x,0) = f(x)##. What if however I need use alternative initial conditions such as ##u(x,y=c) = f(x)## for some constant ##c##? Can the solution be propagated the same way?- LieToMe
- Thread
- Condition Initial
- Replies: 3
- Forum: Differential Equations
-
Showing that a state is unentangled under a certain condition
This is an iff statement, so we proceed as follows ##\Rightarrow## We assume that ##|\phi \rangle## is uncorrelated. Thus the state operator must be of the form ##\hat \rho = \rho^{(1)} \otimes \rho^{(2)}## (equation ##8.16## in Ballentine's book). The spectral decomposition of the state...- JD_PM
- Thread
- Condition State
- Replies: 10
- Forum: Advanced Physics Homework Help
-
M
How to 'shift' Fourier series to match the initial condition of this PDE?
Hi, Question: If we have an initial condition, valid for -L \leq x \leq L : f(x) = \frac{40x}{L} how can I utilise a know Fourier series to get to the solution without doing the integration (I know the integral isn't tricky, but still this method might help out in other situations)? We are...- Master1022
- Thread
- Condition Fourier Fourier series Initial Match Pde Series Shift
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
A Energy condition respecting warp drives in Einstein Cartan theory
I read this paper where if you take the alcubierre metric calaculations while including torsion in GR you get positive energy spin requirements instead of exotic matter. Here is the link: https://arxiv.org/abs/1807.09745 Could it be because a spinning quantum vacuum will be less stiff like a...- Quantum23
- Thread
- Alcubierre warp drive Condition Einstein Energy Theory Torsion Warp
- Replies: 9
- Forum: Special and General Relativity
-
Initial condition of Wave functions with Yukawa Potential
Hello, I was going to solve with a calculator the eigenvalues problem of the Schrödinger equation with Yukawa potential and I was thinking that the boundary conditions on the eigenfunctions could be the same as in the case of Coulomb potential because for r -> 0 the exponential term goes to 1...- Riccardo Marinelli
- Thread
- Boundary condition Condition Functions Initial Potential Wave Wave functions Yukawa Yukawa potential
- Replies: 4
- Forum: Advanced Physics Homework Help
-
M
Weird condition describing symmetry transformation
I'm a bit confused about the condition given in the description of the symmetry transformation of the filed. Usually, given any symmetry transformation ##x^\mu \mapsto \bar{x}^\mu##, we require $$\bar\phi (\bar x) = \phi(x),$$ i.e. we want the transformed field at the transformed coordinates to...- Markus Kahn
- Thread
- Condition Field Symmetry Transformation Variation Weird
- Replies: 2
- Forum: Advanced Physics Homework Help
-
Will the pebble meet with the block according to the given condition?
Question 1: I have used v= Aω*cos(ωt+δ) where A= 0.2 m, ω= π/3, t=1 and δ=0. Are the values right in this case? I am confused. Question 2: From question 1 I have got the value of V which is 9 m/s. By using v= ω√(A^2-x^2), I have got the value of x. Now, do I need to add it with 2.5(distance...- Mahfuz_Saim
- Thread
- Block Condition Projectile motion Spring
- Replies: 21
- Forum: Introductory Physics Homework Help
-
B
Topological insulators and their optical properties
I have tried to write down the boundary conditions in this case and looked into them. As conditions i) and ii) were trivial, i looked into iii) and iv) for information that I could use. But all I got was that for the transmitted wave to have an angle, the reflective wave should also have an...- bubblewrap
- Thread
- Boundary Condition Insulators Maxwell Optical Properties Topological Topological insulator Topological insulators
- Replies: 1
- Forum: Advanced Physics Homework Help
-
G
A Quantum Mechanic/wave function/junction condition
May i know how do i eliminate C and D and how do i obtain the last two equations? Are there skipping of steps in between 4th to 5th equation? What are the intermediate steps that i should take to transit from 4th equation to the 5th equation?- GreenTea09
- Thread
- Condition Quantum Quantum mechanics Wave function
- Replies: 3
- Forum: Quantum Physics
-
T
In short circuit condition, what is wrong with following derivation
V=ir considering the whole circuit Now we knowV=E-ir Then ir=E-ir Therefore i=E/2r Therefore,V=E/2- Theresa
- Thread
- Circuit Condition Derivation Short Short circuit
- Replies: 2
- Forum: Classical Physics
-
MHB Condition for A Quartic Equation to have a Real Root
Show $20a^2+20b^2+5c^2\ge 64$ if $y=x^4+ax^3+bx^2+cx+4$ has a real root.- anemone
- Thread
- Condition Root
- Replies: 2
- Forum: General Math
-
M
MHB Is the Condition Number of A'A Related to its Matrix Norm?
Hey! :o We have a matrix $A\in \mathbb{R}^{m\times n}$ which has the rank $n$. The condition number is defined as $\displaystyle{k(A)=\frac{\max_{\|x\|=1}\|Ax\|}{\min_{\|x\|=1}\|Ax\|}}$. I want to show that $k_2(A^TA)=\left (k_2(A)\right )^2$. We have that...- mathmari
- Thread
- Condition
- Replies: 3
- Forum: General Math
-
Enthelpy change in isentropic condition (air-con)
h and s can be obtained from "Saturated refrigerant-134a—Pressure table" however, how to get h2? it is not on the curve, and neither p or dV is given in the question. Thank you- yecko
- Thread
- Change Condition Isentropic
- Replies: 3
- Forum: Introductory Physics Homework Help
-
E
Rearranging the equation for the cutoff condition in optical fibers
Hello! In Optical fibers, let ##k_1## and ##k_2## be respectively the propagation constants in core and cladding, ##\beta## the propagation costant of a mode along the direction ##z##, ##a## the radius of the fiber. Using the normalized quantities ##u=a \sqrt{k_1^2 − \beta^2}## and ##w=a... -
What is the continuity condition for the heat flux through a boundary?
Assume there is a boundary separates two medium with different heat conductivity [κ][/1] and [κ][/2]. In one medium, the temperature distribution is [T][/1](r,θ,φ) and on the other medium is [T][/2](r,θ,φ). What is the relationship between [T][/1] and [T][/2] ? Is it - [κ][/1]grad [T][/1]=-...- LordGfcd
- Thread
- Boundary Condition Continuity Flux Heat Heat flux Heat transfer Thermal
- Replies: 1
- Forum: Electromagnetism
-
D
I Sufficient condition for a vector field to be conservative
Homework Statement:: F is not conservative because D is not simply connected Relevant Equations:: Theory Having a set which is not simply connected is a sufficient conditiond for a vector field to be not conservative?- DottZakapa
- Thread
- Condition Field Vector Vector field
- Replies: 3
- Forum: Differential Geometry
-
MHB Apc.9.3.1 solution to the differential equation condition
253 Which of the following is the solution to the differential equation condition $$\dfrac{dy}{dx}=2\sin x$$ with the initial condition $$y(\pi)=1$$ a. $y=2\cos{x}+3$ b. $y=2\cos{x}-1$ c. $y=-2\cos{x}+3$ d. $y=-2\cos{x}+1$ e. $y=-2\cos{x}-1$ integrate $y=\displaystyle\int 2\sin... -
R
I Condition for a pair of straight lines
While determining the condition for the pair of straight line equation ##ax^2+2hxy+by^2+2gx+2fy+c=0## or ##ax2+2(hy+g)x+(by^2+2fy+c)=0 ## (quadratic in x) ##x = \frac{-2(hy+g)}{2a} ± \frac{√((hy+g)^2-a(by^2+2fy+c))}{2a}## The terms inside square root need to be a perfect square and it is...- rajeshmarndi
- Thread
- Condition Lines Pair straight lines
- Replies: 1
- Forum: Linear and Abstract Algebra
-
Why is the condition E << m valid for Carbon 12 ions in nonrelativistic physics?
Clarification: The statement in the title is actually from the solution to the homework question, as given by the textbook (you can see the whole thing below under "Textbook solution"). The solution doesn't explain everything, which is where my confusion comes from. Usually in my classes we...- dsilvas
- Thread
- Carbon Condition Elementary particle physics Energy Ions Linear accelerator Mystery Special relativity
- Replies: 9
- Forum: Introductory Physics Homework Help
-
B The Strong Energy Condition in General Relativity
Hello. I've recently been reading this paper... https://arxiv.org/pdf/gr-qc/0001099.pdf ...in the hope that I can begin to understand some the role of the energy conditions in General Relativity. But I'm not making much progress and so I've turned to this paper...- Cerenkov
- Thread
- Condition Energy General General relativity Relativity
- Replies: 6
- Forum: Special and General Relativity
-
I Condition for delta operator and total time differential to commute
While deriving continuity equation in Fluid mechanics, our professor switched the order of taking total time derivative and then applying delta operator to the function without stating any condition to do so(Of course I know it is Physics which alows you to do so) . So,I began to think...- Abhishek11235
- Thread
- Algebra Commute Condition Delta Differential Operator Operators Time
- Replies: 1
- Forum: Classical Physics
-
Discrete-time Signal & Periodicity condition
Namaste I seek a clarification on the periodicity condition of discrete-time (DT) signals. As stated in Oppenheim’s Signals & Systems, for a DT signal, for example the complex exponential, to be periodic, i.e. ej*w(n+N) = ej*w*n, w/2*pi = m/N, where m/N must be a rational number. Above is...- wirefree
- Thread
- Condition Discrete Exponential Signal
- Replies: 1
- Forum: Electrical Engineering
-
P
Condition for f(x,y,z) = f(x,y,z(x,y)) being extremized
As far as I know when a function is extremized its partial derivatives are all equal to 0 (provided we aren't dealing with a constraint) ##\left(\frac{\partial f}{\partial x} \right)_{yz} = \left(\frac{\partial f}{\partial y}\right)_{xz} = \left(\frac{\partial f}{\partial z}\right)_{xy} =0##...- PhDeezNutz
- Thread
- Condition
- Replies: 15
- Forum: Calculus and Beyond Homework Help
-
V
A What type of function satisfy a type of growth condition?
Let ##f:\mathbb{R}^n\rightarrow\mathbb{R}^n##. Is there any class of function and some type of "growth conditions" such that bounds like below can be established: \begin{equation} ||f(x)||\geq g\left( \text{dist}(x,\mathcal{X})\right), \end{equation} with ##\mathcal{X}:= \{x:f(x)=0\}## (zero...- Vulture1991
- Thread
- Condition Function Functional analysis Growth Real analysis Type
- Replies: 2
- Forum: General Math
-
Condition for AB+A+B=0 where A and B are matrices
I first tried by assuming the matrices but it was becoming complicated so i tried taking transpose on both sides,it also did not help.So now i could not think of what to do further.Help please.- Physics lover
- Thread
- Condition Matrices
- Replies: 18
- Forum: Calculus and Beyond Homework Help
-
K
How does the retarded scalar potential satisfy the Lorentz gauge condition?
As homework, I shall show that the retarded scalar potential satisfîes the Lorentz gauge condition as well as the inhomogenous wave equation. We saw in class how to do it. But I was thinking about this, and it seems to me that it's redundant to prove both of those things. For, if the scalar...- kent davidge
- Thread
- Condition Gauge Lorentz
- Replies: 1
- Forum: Electromagnetism
-
K
Normalization condition with a neural network
Hello! I have some data points generated from an unknown distribution (say a 1D Gaussian for example) and I want to build a neural network able to approximate the underlaying distribution i.e. for any given ##x## as input to the neural network, I want the output to be as close as possible to...- kelly0303
- Thread
- Condition Network Neural Normalization
- Replies: 3
- Forum: Programming and Computer Science