Coordinate transformation Definition and 96 Threads
-
Schwarzschild Extension Coordinate Transformation Algebra
So I have the metric as ##ds^{2}=-(1-\frac{2m}{r})dt^{2}+(1-\frac{2m}{r})^{-1}dr^{2}+r^{2}d\Omega^{2}##* I have transformed to coordinate system ##u,r,\phi, \theta ##, where ##u=t-r*##(2), where ##r*=r+2m In(\frac{r}{2m}-1)## and to the coordinate system ##v,r,\phi, \theta ##, where...- binbagsss
- Thread
- Algebra Coordinate Coordinate transformation Extension Schwarzschild Transformation
- Replies: 8
- Forum: Special and General Relativity
-
&
Diffeomorphisms and active transformations
I've been reading Sean Carroll's notes on General Relativity, http://arxiv.org/pdf/gr-qc/9712019.pdf . I've got to chapter 5 (page 133) and am reading the section on diffeomorphisms in which Sean relates diffeomorphisms to active transformations. When he says this does he mean that one defines a...- "Don't panic!"
- Thread
- Coordinate transformation Diffeomorphisms Differential geometry Transformations
- Replies: 4
- Forum: Differential Geometry
-
T
Coord. Transf.: V'μ from (dy/dx)*Vν
V′μ=((∂yμ)/(∂xν))*Vν This is a contravariant vector transformation. (Guys I am really sorry for making the formula above looks so incomprehensible as I still new to this.) For the y in the partial derivative, is y a function in terms of x? In that sense, is it formula that maps x to y? Is it...- TimeRip496
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 2
- Forum: Special and General Relativity
-
9
Coordinate transform from sensor to North East Down frame
I am using an algorithm that transforms from my sensor frame to North West Up and I want to instead use North East Down. I have attached the current algorithm. I also want to skip the first step in my algorithm. Here is the current algorithm: http://www.filedropper.com/transformationalgorithm...- 9988776655
- Thread
- Coordinate Coordinate transformation Frame Sensor Transform
- Replies: 1
- Forum: Other Physics Topics
-
K
Coordinate Transformation of the equation of continuity for a vaporizing droplet
Hey there, I trying to understand the following coordinate transformation of the equation of continuity (spherical coordinates) for a vaporizing liquid droplet\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho v) = 0 into \epsilon \sigma \frac{\partial... -
Coordinate transformation parameterization
Homework Statement Suppose two observers O and O', whose positions coincide , each sets up a set of 2D cartesian coordinates (x,y) and (x',y') respectively to describe the position of a certain object at a fixed point . Derive a set of formulae for one observer to convert the other observer's...- throneoo
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 2
- Forum: Precalculus Mathematics Homework Help
-
K
What is the Geometrical Proof for the Coordinate Transformation Formula?
Homework Statement Prove: \cos\alpha\cdot\cos\alpha'+\cos\beta\cdot\cos\beta'+\cos\gamma\cdot\cos \gamma'=\cos\theta See drawing Snap1 Homework Equations None The Attempt at a Solution See drawing Snap2. i make the length of the lines 1 and 2 to equal one, for simplicity. The...- Karol
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 2
- Forum: Introductory Physics Homework Help
-
J
Geometrical interpretation of this coordinate transformation
How can I geometrically interpret this coordinate transformation (from x,y space to \check{x},\check{y} space)? x = \check{x}cos(β) - \check{y}sin(β) y = \frac{1}{2}(\check{x}2 -\check{y}2)sin(2β) -\check{x}\check{y}cos (2β)- jam_27
- Thread
- Coordinate Coordinate transformation Geometrical Interpretation Transformation
- Replies: 6
- Forum: Differential Geometry
-
I
Simple coordinate transformation question
http://i.imgur.com/MDigPh5.png if i have my original coordinate (white) and i am transforming this into the red coord. , could someone explain to me why y=y'cos\phi is incorrect and why y'=ycos\phi is correct?- iScience
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 1
- Forum: General Math
-
E
Proving The Hamiltonian Is Invariant Under Coordinate Transformation
Homework Statement (a) Consider a system with one degree of freedom and Hamiltonian H = H (q,p) and a new pair of coordinates Q and P defined so that q = \sqrt{2P} \sin Q and p = \sqrt{2P} \cos Q. Prove that if \frac{\partial H}{\partial q} = - \dot{p} and \frac{\partial H}{\partial p} =...- embphysics
- Thread
- Coordinate Coordinate transformation Hamiltonian Invariant Transformation
- Replies: 17
- Forum: Advanced Physics Homework Help
-
H
Coordinate transformation for line integrals; quadrature rules
Hi all, The context of this problem is as follows: I'm trying to implement a discontinuous finite element method and the formulation calls for the computation of line integrals over the edges of the mesh. Anyway, more generally, I need to evaluate \int_{e}f(x,y)ds, where e is a line segment... -
C
Line element under coordinate transformation to get polar form
Homework Statement Hello Guys, I am reading Hobson's General Relativity and I have come across an exercise problem, part of which frustrates me: 3.20 (P. 91) In the 2-space with line element ds^2=\frac{dr^{2}+r^{2}d\theta^{2}}{r^{2}-a^{2}}-\frac{r^{2}dr^{2}}{{(r^{2}-a^{2})}^{2}} and...- cedricyu803
- Thread
- Coordinate Coordinate transformation Element Form Line Line element Polar Polar form Transformation
- Replies: 2
- Forum: Advanced Physics Homework Help
-
O
!Understanding Partial Derivatives of Coordinate Transformation
Hi Everyone, I was studying coordinate transformation and I came across this equation, that I couldn't understand how it came up. Let me put it this way: x = rcosθ Then if I want to express the partial derivative (of any thing) with respect to x, what would be the expression? i.e. ∂/∂x=...- onchoa
- Thread
- Coordinate Coordinate transformation Derivatives Partial Partial derivatives Transformation
- Replies: 2
- Forum: Differential Equations
-
MHB Coordinate transformation derivatives
I've had to hit my books to help someone else. Ugh. Say we have the coordinate transformation \bf{x}' = \bf{x} + \epsilon \bf{q}, where \epsilon is constant. (And small if you like.) Then obviously d \bf{x}' = d \bf{x} + \epsilon d \bf{q}. How do we find \frac{d}{d \bf{x}'}? I'm missing... -
S
How should I approach this (coordinate transformation) problem?
I am starting to deal with optomechanical systems as part of my work, and am faced with what seems to be an uncomplicated problem, however I'm ashamed to admit that I am having great difficulty getting to grips with it. I'd like some pointers and/or advice as to how to go about solving these...- Swulf
- Thread
- Approach Coordinate transformation Transformation
- Replies: 3
- Forum: General Math
-
M
Analyzing a coordinate transformation
In McCauley's book Classical Mchanics: Transformations, Flows, Integrable and Chaotic Dynamics we are analyzing a coordinate transformation in order to arrive at symmetry laws. A coordinate transformation is given by q_i(\alpha) = F_i(q_1,...,q_f, \alpha). Then, to the first order Mccauley...- mjordan2nd
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 4
- Forum: Classical Physics
-
Z
Coordinate Transformation in Special Relativity with Linear Algebra Part A
Homework Statement In the figure, let S be an inertial frame and let S' be another frame that is boosted with speed v along its x'-axis w.r.t. S, as shown. The frames are pictured at time t = t0 = 0: A) Find the Non-relativistic transformation (Galilean Transformation) between the two...- zellwwf
- Thread
- Algebra Coordinate Coordinate transformation Linear Linear algebra Relativity Special relativity Transformation
- Replies: 14
- Forum: Introductory Physics Homework Help
-
X
Help with coordinate transformation problem
Homework Statement For elliptical cylindrical coordinates: x = a * cosh (u) * cos (v) y = a * sinh (u) * sin (v) z = z Derive the relations analogous to those of Equations (168b-e) for circular cylindrical coordinates. In particular, verify that h_u = h_v = a * sqrt(cosh^2 (u) -...- xiphius75
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
P
Coordinate transformation of a tensor in 2 dimensions
Homework Statement Given a symmetric tensor T_{\mu\nu} on the flat Euclidean plane (g_{\mu\nu}=\delta_{\mu\nu}), we want to change to complex coordinates z=x+iy, \,\overline{z}=x-iy. Show, that the components of the tensor in this basis are given by...- physicus
- Thread
- Coordinate Coordinate transformation Dimensions Tensor Transformation
- Replies: 2
- Forum: Introductory Physics Homework Help
-
A
Use of tensor densities in coordinate transformation
Why use a tensor density transformation when doing a coordinate transformations? What is the advantage? I've always learn that transforming a tensor involves pre and post multiplying by the transformation tensor and it's inverse respectively, but I've come across ones in my research that use...- aeson25
- Thread
- Coordinate Coordinate transformation Tensor Transformation
- Replies: 3
- Forum: Classical Physics
-
M
Understanding Vector Invariance Under Coordinate Transformation
What does it mean for a vector to remain "invariant" under coordinate transformation? I think I already know the answer to this question in a foggy, intuitive way, but I'd like a really clear explanation, if someone has it. I know all of multivariable calculus and quite a bit of linear algebra...- marschmellow
- Thread
- Coordinate Coordinate transformation Invariant Mean Transformation Vector
- Replies: 5
- Forum: Calculus
-
A
Coordinate transformation and metric tensor
General four-dimensional (symmetric) metric tensor has 10 algebraic independent components. But transformation of coordinates allows choose four components of metric tensor almost arbitrarily. My question is how much freedom is in choose this components? Do exist for most general metric...- archipatelin
- Thread
- Coordinate Coordinate transformation Metric Metric tensor Tensor Transformation
- Replies: 3
- Forum: Special and General Relativity
-
T
Vector coordinate transformation: Help?
Homework Statement How does \delta_{b}C^{d} transform? Also compute \delta^{'}_{b} C^{'d}The Attempt at a Solution \delta_{b} C^{d} = \frac{dC^{d}}{dX^{b}} ?I think I am supposed to prove that its a scalar, but I really have no starting point. Any extensive help would be really great.- tetris11
- Thread
- Coordinate Coordinate transformation Transformation Vector
- Replies: 4
- Forum: Advanced Physics Homework Help
-
F
Euclidean space, euclidean topology and coordinate transformation
Hi, I have some doubts about the precise meaning of Euclidean space. I understand Euclidean space as the metric space (\mathbb{R}^n,d) where d is the usual distance d(x,y)=\sqrt{\sum_i(x_i-y_i)^2}. Now let's supose that we have our euclidean space (in 3D for simplicity) (\mathbb{R}^3,d)...- Fernsanz
- Thread
- Coordinate Coordinate transformation Euclidean Euclidean space Space Topology Transformation
- Replies: 8
- Forum: Differential Geometry
-
P
Relating 2nd order partial derivatives in a coordinate transformation.
Homework Statement Could some mathematically minded person please check my calculation as I am a bit suspicious of it (I'm a physicist myself). This isn't homework so feel free to reveal anything you have in mind. Suppose I have two functions \phi(t) and \chi(t) and the potential V which...- phsopher
- Thread
- 2nd order Coordinate Coordinate transformation Derivatives Partial Partial derivatives Transformation
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
I
Coordinate transformation and conformal transformation?
I'm confused by the relation of coordinate transformation and conformal transformation. I found a nice note about conformal field theory written by David Tong. It does contain the demonstration related to my question, but I still don't understand. Here it goes, The definition of conformal...- ismaili
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 7
- Forum: Quantum Physics
-
Coordinate Transformation & Jacobian Matrix
Is the following correct, as far as it goes? Suppose I have a vector space V and I'm making a transformation from one coordinate system, "the old system", with coordinates xi, to another, "the new system", with coordinates yi. Where i is an index that runs from 1 to n. Let ei denote the...- Rasalhague
- Thread
- Coordinate Coordinate transformation Jacobian Matrix Transformation
- Replies: 3
- Forum: Linear and Abstract Algebra
-
P
Galilean Coordinate Transformation (Classical Relativity)
Homework Statement An observer in an inertial reference frame S sees two cameras flash simultaneously. The cameras are 800 m apart. He measures that the first flash occurs at four coordinates given by X1=0, Y1=0, Z1=0 and T1=0, and that the second flash occurs at four coordinates given by...- pratikpatel
- Thread
- Coordinate Coordinate transformation Galilean Relativity Transformation
- Replies: 1
- Forum: Advanced Physics Homework Help
-
M
Coordinate transformation under rotation
If a system is rotated around Z axis then the new coordinates are X'= xcos() - Y sin(), Y'= Xsin() + Ycos() Z'= Z How is this obtained ?? () --->theta , angle of rotation around Z axis . -
M
Coordinate transformation of nabla operator
Hi all! I am studying the Galilean group of transformations and I'm not sure how to transform the Nabla operator. Consider the 2 transformations: (x,t)->(x+s,t) (x,t)->(Dx,t) and the expression "nabla (x)" where D is a matrix and x, s are vectors I am pretty sure that I have... -
T
Coordinate transformation of contravariant vectors.
Note: The derivatives are partial. I've seen the coordinate transformation equation for contravariant vectors given as follows, V'a=(dX'a/dXb)Vb What I don't get is the need for two indices a and b. Wouldn't it be adequate to just write the equation as follows? V'a=(dX'a/dXa)Va...- trv
- Thread
- Contravariant Coordinate Coordinate transformation Transformation Vectors
- Replies: 2
- Forum: Differential Geometry
-
F
Coordinate Transformation - velocity?
If I have a velocity vector V in some coordinate system. Is there anything special that needs to be done to convert V -> V' ? Basically, I have a matrix (N x 3) in north-east-down coordinates. I am trying to convert (a row at a time_ to another matrix (N x 3) to earth-centered-earth-fixed...- FrogPad
- Thread
- Coordinate Coordinate transformation Transformation Velocity
- Replies: 2
- Forum: Linear and Abstract Algebra
-
D
Coordinate Transformation (and using line elements)
This is from Hartle's GR book, in one of the first chapters it talks about diff geom, nothing too advanced, but I am learning on my own. Homework Statement It's part E I have trouble with. Read e. and skip to last para if you want. Consider this coordinate transformation: x=uv ...- darkSun
- Thread
- Coordinate Coordinate transformation Elements Line Transformation
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
J
How are tensors transformed in non-linear coordinate systems?
Let's say I have a non-linear transformation for (ct,x,y,z) in one coordinate system to (cT,X,Y,Z) of another coordinate system. Despite being nonlinear, I assume I can transform all four-vectors using the same non-linear transformation (correct?), but how in the world do I transform the...- JustinLevy
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 12
- Forum: Special and General Relativity
-
A
Coordinate transformation and choice of a suitable coordinate system.
Consider the line element: ds^2=-f(x)dt^2+g(x)dx^2 in a coordinate system (t,x) where f(x) and g(x) are two functions to be determined by solving Einstein equation. But I can always make a transformation g(x)dx^2=dy^2 and then calculate everything in the (t,y) coordinate system. My...- arroy_0205
- Thread
- Choice Coordinate Coordinate system Coordinate transformation System Transformation
- Replies: 2
- Forum: Special and General Relativity
-
P
Unitary coordinate transformation = rotation?
Homework Statement Suppose I define a linear coordinate transformation that I can describe with a matrix U. If U is unitary. i.e. U^{-1}U = UU^{-1}=1 does that necessarily imply that the transformation corresponds to a pure rotation (plus maybe a translation), so that I may assume that...- Pacopag
- Thread
- Coordinate Coordinate transformation Rotation Transformation
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
G
Coordinate transformation and multiplying with size of J
Hi, I am using the book "Advanced Engineering Mathematics" by Erwin Kreyszig where I am reading on the transformation of coordinates - when changing from \int f(x,y) to \int f(v(x,y),v(x,y) it is necessary to multiply with the size of the jacobian, |J| - I cannot find the proof in the book...- greisen
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
P
How Do Lorentz Transformations Prove Light Pulse Symmetry?
Homework Statement Frame S' has an x component of velocity u relative to the frame S and at t=t'=0 the two frames coincide. A light pulse with a spherical wave front at the origin of S' at t'=0. Its distance x' from the origin after a time t' is given by x'^2=(c^2)(t'^2). Transform this...- physicyst
- Thread
- Coordinate Coordinate transformation Lorentz Transformation
- Replies: 1
- Forum: Advanced Physics Homework Help
-
R
How Do You Reverse a Vector Transformation?
If we want to transform vector A from cooedinate ei to ei', then this formula occur: Aj' = aij Ai But I have a question, if I have found all components of Aj', then I want to transform it back to Ai, what should I do? I have tried Ai = aij Aj' but it won't give me the same number. Thanks...- R3DH34RT
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 4
- Forum: Differential Geometry
-
N
Coordinate transformation of lagrangian
Hey all, According to my physics textbook, if the potential energy of a particle is a homogeneous function of the spatial coordinate r, one can transform r by some factor a and t by some factor b=a^(1-.5k) such that the Lagrangian of the particle is multiplied by a^k. I understand all of this...- nlake27
- Thread
- Coordinate Coordinate transformation Lagrangian Transformation
- Replies: 1
- Forum: Advanced Physics Homework Help
-
L
What Coordinate Transformation Converts a Complex Metric to Minkowski Space?
How can I identify the coordinate transformation that turns ds^2 = \left(1+\frac{\epsilon}{1+c^2t^2}\right)^2c^2dt^2 - \left(\frac{\epsilon}{1+x^2}\right)^2x^2 - \left(\frac{\epsilon}{1+y^2}\right)^2y^2 - \left(\frac{\epsilon}{1+z^2}\right)^2z^2 into the Minkowski metric ds^2 = c^2dt^2...- Logarythmic
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 11
- Forum: Advanced Physics Homework Help
-
D
Mathematica Mathematical Proof For Lorenz Coordinate Transformation
Hi, I have a pretty in depth understanding of special relativity. Recently I have been searching for mathematical proof of the Lorenz transformation. I found some information about it, but to tell the truth I didn't understand much of it. Maybe one of you guys can shed some light on the proof...- DrorH
- Thread
- Coordinate Coordinate transformation Lorenz Mathematical Mathematical proof Proof Transformation
- Replies: 16
- Forum: MATLAB, Maple, Mathematica, LaTeX
-
Q
How to Find the Coordinate Transformation that Diagonalizes a Quadratic Form?
Hello, I was wondering how one would go about finding the coordinate transformation that diagonalizes: 2(x1)^2+2(x2)^2+(x3)^2+2(x1)(x3)+2(x2)(x3) Thanks a bunch.- QuantumDefect
- Thread
- Coordinate Coordinate transformation Transformation
- Replies: 1
- Forum: Advanced Physics Homework Help
-
P
Finding Eigenvectors for Coordinate transformation
I'm wondering if anyone here might have a solution to a problem I've having. This is a Quantum Mechanics problem I'm doing. I calculate a 4 by 4 complex Hermitian matrix (H = Hamiltonian) in a basis where it is not diagonal. I diagonalize it numerically (using eispack) and get eigenvalues...- pjg
- Thread
- Coordinate Coordinate transformation Eigenvectors Transformation
- Replies: 11
- Forum: Linear and Abstract Algebra
-
W
Coordinate transformation matrix?
Can anyone tell me: 1) How to understand the defination to orthogonal transformation matrix? Defination: A(i,j)A(k,j)=q(i,k) where q is Kronecker delta. 2) Why the inverse of this orthogonal matrix is equal to its transpose? Will.- Will_C
- Thread
- Coordinate Coordinate transformation Matrix Transformation Transformation matrix
- Replies: 3
- Forum: Linear and Abstract Algebra
-
K
What is the Differential of a Vector?
Greeting A TA has got me very and utterly confused. He won't be avaible for a few days, so I'm asking you guys. Consider the transformation to cilindrical coord. x-->r.con[the] y-->r.sin[the] z-->z I have the Jabobian (no problems here). He then asks the differential da , where a...