Hello! :) I am looking at the proof of this theorem:
Let $f \in C^{1}([a,b]),P:a=x_{0}<x_{1}<...<x_{n}=b $ uniform partition of $[a,b]$.Then there is exactly one function $s \in S_{3}(P)$ so that $s(x_{i})=f(x_{i}),i=0,...,n$ and $s,s',s''$ continuous at...