Why are the coordinates seemingly used when the symmetry is around ##z## axis? Any particular reason why not ##x## or ##y##. In transforming from Cartesian to cylindrical form; I can see that ##z## is not considered when determining ##r##.
Can we also use ##x## and ##z## assuming that the...
How I would have guessed you were supposed to solve it:
What you are supposed to do is just take the gradients of all the u:s and divide by the absolute value of the gradient? But what formula is that why is the way I did not the correct way to do it?
Thanks in advance!
The solution states that there's no rotational motion when ##C## is cut (the motion is curvilinear), so we can take torques with respect to the centre of mass of the plate. But, isn't it rotating? I think of it as a pendulum, which describes a circular motion. What's the difference? Wouldn't the...
Hi PF.
I'm over ten years out from graduate school in physics, and I still enjoy re-reading my textbooks. I came across the word curvilinear, and thought how strange a word it is; a juxtaposition of curved and linear, which are at times understood to be opposites. The textbook was describing...
Hello,
the physical domain in the (y, z) space is mapped to a rectangular computational region in the (ŋ,Ƹ)-space, where (ŋ,Ƹ) are the new coordinates. This technique frees the computational simulation from geometry restriction.
after transforming the governing equations ( PDEs) to the...
Homework Statement
A wedge with face inclined at an angle θ to the horizontal is fixed to a rotating turntable. A block of mass m rests on the inclined plane and the coefficient of static friction between the block and the wedge is µ. The block is to remain at position R from the centre of...
Homework Statement
A weight is suspended from a spring 50 cm long and stretches it by 1 cm. Take the other end of the spring in your hand and rotate the weight in a horizontal plane so that the spring is stretched by 10 cm. What is the velocity of the weight? (The force with which the stretched...
I am trying to solve problems where I calculate work do to force along paths in cylindrical and spherical coordinates.
I can do almost by rote the problems in Cartesian: given a force ##\vec{F} = f(x,y,z)\hat{x} + g(x,y,z)\hat{y}+ h(x,y,z)\hat{z}## I can parametricize my some curve ##\gamma...
I am beginning to study the mathematics of curvilinear coordinates and all textbooks and web sites do not have realistic examples of non-othogonal systems.
What are some examples of non-orthoganal curvilinear coordinates so that I can practice on actual systems rather than generalized examples...
Homework Statement
I’m studying orthogonal curvilinear coordinates and practice calculating differential operators.
However, I’ve run across an exercise where the coordinate system is only in 2D and I’m confused about how to proceed with the calculations.
Homework Equations
A point in the...
1) Firstly, in the context of a dot product with Einstein notation :
$$\text{d}(\vec{V}\cdot\vec{n} )=\text{d}(v_{i}\dfrac{\text{d}y^{i}}{\text{d}s})$$
with ##\vec{n}## representing the cosine directions vectors, ##v_{i}## the covariant components of ##\vec{V}## vector, ##y^{i}## the...
Homework Statement
The mine skip is being hauled to the surface over the curved track by the cable wound around the 38-in. drum, which turns at the constant clockwise speed of 96 rev/min. The shape of the track is designed so that y = x2/28, where x and y are in feet. Calculate the magnitude of...
Homework Statement
Is there a more intuitive way of thinking or calculating the transformation between coordinates of a field or any given vector?
The E&M book I'm using right now likes to use the vector field
## \vec F\ = \frac {\vec x} {r^3} ##
where r is the magnitude of ## \vec x...
In Weinberg's book, it is said that a given metric ##g_{\mu \nu}## could be describing a true gravitational field or can be just the metric ##\eta_{\alpha \beta}## of special relativity written in curvilinear coordinates. Then it is said that in the latter case, there will be a set of...
Homework Statement
The system shown is initially at rest when the bent bar starts to rotate about the vertical axis AB with constant angular acceleration a 0 = 3 rad/ s2 . The coefficient of static friction between the collar of mass m = 2 kg and the bent bar is f.Ls = 0.35, and the collar is...
Hi guys, i can not understand something about curvilnear coordinates...from a "geometric" point of view what dose the componentes of the vector mean? in a non-curvilinear coordinates the components are the "projections" on along the bases but in a curvilinear coordinates the directions of the...
Hi,
In an article on theoretical fluid dynamics I recently came across the following equation:
$$M_i = \sqrt{g} \rho v_i$$
where ##M_i## denotes momentum density, ##v_i## velocity, ##\rho## the mass density and g is the determinant of the metric tensor. It is probably quite obvious, but I do...
The acceleration function of an object doing curvilinear motion is a = {(-0.2t)i+2j+1.5k} m/s^2, where t is in s. If its initial velocity v0 = 8i m/s, and initial position is at the origin, determine the magnitude of its velocity when t=3 s.
Badly need your help guys. Thanks!
All I see is
ax...
Homework Statement
Please refer to both figures. One has a picture and the other is the actual problem. Ignore the pencil writing on the figure as it was for a separate problem.
Homework Equations
aB+aA/B=aA
vB+vA/B=vA
an=v2rThe Attempt at a Solution
I am actually really at a lost at the...
hi, I really wonder what the difference between curvilinear coordinates in a Euclidean space and embedding a curved space into Euclidean space is ? They resemble to each other for me, so Could you explain or spell out the difference? Thanks in advance...
1. Homework Statement
Calculate the curvilinear integral ∫C (x2 + y2)ds where C is the line segment [0,0] → [3,4].
Then calculate the maximum M of x2 + y2 along the segment and verify that the inequality
∫C (x2 + y2)ds ≤ M*length(C)
holds.
Homework Equations
ds = (x'(t)2 + y'(t)2)½dt
∇f(x,y)...
Homework Statement
Homework EquationsThe Attempt at a Solution
I have stared at this for hours and don't know where to start. I think I need to get r in terms of t but I don't really know how with the information given. I just need a good hint to get started.
Homework Statement
At the instant shown, the driver of the truck has just pressed the accelerator pedal down and the truck has suddenly acquired a tangential acceleration of 2.2m/s^2.
Coefficient of static friction between crate and tray = 0.4
Coefficient of kinetic friction between crate and...
https://www.particleincell.com/2012/curvilinear-coordinates/
http://www.jfoadi.me.uk/documents/lecture_mathphys2_05.pdf
Hi, I have a question about the curvilineare coordinate system.
I wonder why is normal to the isosurfaces?isnt ei a tangent vector to the surface ui
since
"With these...
Same with problem https://www.physicsforums.com/threads/trigonometric-problem.76696/ . My problems here is I cannot came up with the same answers in the book. I didn't solve using vectors.
Homework Equations
I would like to know the equation on the 4th hint although I have different solution...
This problem is same as the problem on this link https://www.physicsforums.com/threads/trigonometric-problem.76696/ .
I would like to ask the number 4 hint which is "4) We therefore have, for example the equality: " the equations can't be seen on my pc as it will only outputs this...
Homework Statement
Show that the uvw-system is orthogonal.
r, \theta, \varphi are spherical coordinates.
$$u=r(1-\cos\theta)$$
$$v=r(1+\cos\theta)$$
$$w=\varphi$$
The Attempt at a Solution
So basically I want to show that the scalar products between \frac{\partial \vec{r}}{\partial u}...
I have just been asked why we use curvilinear coordinate systems in general relativity. I replied that, from a heuristic point of view, space and time are relative, such that the way in which you measure them is dependent on the reference frame that you observe them in. This implies that...
I have a system of forces which I have reduced to a force-couple system. I am trying to predict the motion of the force and couple. This is hard because the force changes direction as the moment turns the particle. I imagine this should be turned into some sort of tangential-normal components...
This paper is about momentum operator in curvilinear coordinates. The author says that using \vec p=\frac{\hbar}{i} \vec \nabla is wrong and this form is only limited to Cartesian coordinates. Then he tries to find expressions for momentum operator in curvilinear coordinates. He's starting...
Homework Statement
As a part of my self study I am trying to find the covariant basis vectors in the spherical polar coordinates. Since I have never done anything like this before I would appreciate if someone could tell me whether I am on the rigth track. Homework Equations...
The position vector ##\vec{r}## in cartesian coordinates is: ##\vec{r} = x \hat{x} + y \hat{y}##, in polar coordinates is: ##\vec{r} = r \hat{r}##. But, given a curve s in somewhere of plane, with tangent unit vector ##\hat{t}## and normal unit vector ##\hat{n}## along of s, exist a definition...
Hellow everybody!
If ##d\vec{r}## can be written in terms of curvilinear coordinates as ##d\vec{r} = h_1 dq_1 \hat{q_1} + h_2 dq_2 \hat{q_2} + h_2 dq_2 \hat{q_2}## so, how is the vectors ##d^2\vec{r}## and ##\vec{r}## in terms of curvilinear coordinates?
Thanks!
Homework Statement
a) Prove that m (d^2s/dt^2) = Ftang, the tangential component of the net force on the bead. [hint] one way to do this is to take the time derivative of the equation v^2=v(dot)v. The left side should lead you to (d^2s/dt^2), and the right side should lead to Ftang.
b)...
Hello,
let's assume we have an admissible change of coordinates \phi:U\rightarrow \mathbb{R}^n. I would like to know how the inner product on ℝn changes under this transformation. In other words, what is \left\langle \phi (u), \phi (v) \right\rangle for some u,v \in U ?
I thought that...
To specify a vector in cartesian coordinate systems,we assume its tail to be at the origin and give the cartesian coordinates of its head.What about other coordinate systems?
For example,in spherical coordinates,is the following correct?
a \hat{x}+b \hat{y}+c \hat{z}=\sqrt{a^2+b^2+c^2}...
Homework Statement
What is the magnitude of the velocity at t=4.00s?
I would like to see if my approach and answer is correct.
Homework Equations
Position: r = {-30cos(\frac{\pi}{10}t) i + 30sin(\frac{\pi}{10}t) j - (7t) k} ft
The Attempt at a Solution
I took the first...
Homework Statement
A pin is constrained to move in a circular slot of radius 39mm. At the same time a slotted bar also constrains the pin to move down with constant velocity 8mm/s. (as shown in attached diagram).
What is the magnitude of the acceleration of the pin for the position...
HI there.
Some days ago, whyle studying vector mechanics I came across with a rather dazzling doubt. Why isn't there angular velocity and accelaration in a curvilinear translation?
Imagine, a small planet in a perfect circular orbit around a star. Let's say, the planet has no form of...
Homework Statement
The car passes point A with a speed of 25 m/s after which its speed is defined by V = (25-0.15s)m/s. Determine the magnitude of the car's acceleration when it reaches point B, where S = 51.5 m. (the max height of the hill is 16 m, and the function of the hill the car is...
Homework Statement
A stunt car is driven off a cliff with a speed of 110 ft/s. What is the gravitational acceleration of the car normal to its path after falling for 3 seconds?
Homework Equations
The kinematic equations...?
I'm pretty sure that this should be done in Normal and...
Hello,
I have the following problem where I have two groups of transformations R_\alpha (rotation) and S_\lambda (scaling) acting on the plane, so that the orbits of any arbitrary point x=(x0,y0) under the actions of S_\lambda and R_\alpha are known (in the former case they are straight lines...
Hi there -
I'm looking for a clear and intuitive explanation of how one obtains the gradient in polar / cylindrical / curvilinear coords.
I do a lot of tutoring, but am finding that the method I've been using (basically chain rule + nature of directional derivative) just doesn't roll with...
curvilinear coordinate systems and "periodic" coordinates
Hello,
we can consider a generic system of curvilinear coordinates in the 2d plane:
\rho = \rho(x,y)
\tau = \tau(x,y)
Sometimes, it can happen that one of the coordinates, say \tau, represents an angle, and so it is "periodic"...
Just a quick little question.
I was reading a wikipedia article about curvilinear coordinates, as well as some others, and a question popped into my head. Although we take this for granted (at least I do), now I have to ask this.
From what I've seen as an engineer, we always define...
pls see the attachment. so pretty much magnitude of acc would be root (at2 + an2). i figured out an by subbing it into v2/p. but i can't figure out how to calculate at!
id really appreciate the help, I've been at it for 3 hours now! thanks!