# Differential geometry Definition and 177 Discussions

Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.
Since the late 19th century, differential geometry has grown into a field concerned more generally with the geometric structures on differentiable manifolds. Differential geometry is closely related to differential topology and the geometric aspects of the theory of differential equations. The differential geometry of surfaces captures many of the key ideas and techniques endemic to this field.

View More On Wikipedia.org
1. ### I Infinitesimal cube and the stress tensor

The Cauchy stress tensor at a material point is usually visualized using an infinitesimal cube. The stress vectors (traction vectors) on opposite sides of the cube are equal in magnitude and opposite in direction. As a result, the infinitesimal cube is in equilibrium. However, when we derive...
2. ### A Theory of Surfaces and Theory of Curves Relationship

Hello I am interested in the Frenet-Serret Formulas (theory of curves?) relationship to theory of surfaces. 1) Can one arrive to the Frenet-Serret Formulas starting from the theory of surfaces? Any advice on where to begin? 2) For a surface that contain a space curve: if the unit tangent...
3. ### A Why the Chern numbers (integral of Chern class) are integers?

I am a physics student trying to self-learn Chern numbers and Chern class. The book I am learning (Nakahara) introduces the total Chern class as an invariant polynomial of local curvature form ##F## ## P(F) = \det (I + t\frac{{iF}}{{2\pi }}) = \sum\limits_{r = 0}^k {{t^r}{P_r}(F)} ## and each...
4. ### A Notation in Ricci form

The material I am studying express the Ricci form as ##R = i{R_{\mu \bar \nu }}d{z^\mu } \wedge d{{\bar z}^\nu } = i\partial \partial \log G## where ##G## is the determinant of metric tensor, but I am not sure what does ##\log G## here, can anybody help?
5. ### A Geometry and integral laws of physics

Reading the English translation of Einstein's seminal paper on GR. http://einsteinpapers.press.princeton.edu/vol6-trans/90?ajax This paragraph below on p78 doesn't make much sense to me. Could you provide a second English translation or even adding math notation. "Before Maxwell, the laws...
6. ### Geometry Regarding to Spivak's Differential Geometry trilogy

I would like to begin my first exploration of the arts of differential geometry/topology with the first volume of M. Spivak's five-volume set in the different geometry. Is a thorough understanding of vector calculus must before reading his book? I read neither of his Calculus nor Calculus on...
7. ### A Tangent Bundle questions about commutative diagram

I don't know how to create a commutative diagram here so I'd like to refer to Diagram (1) in this Wikipedia article. I need to discuss the application of this diagram to the tangent bundle of a smooth manifold because there are some basic points that are either glossed over or conflict in the...
8. ### Applied Books like J. Callahan's Advanced Calculus: A geometric view

Hello, do you know of any books similar in style to Callahan's Advanced Calculus book(a book that explains the geometrical intuition behind the math)? This goes for any subject in mathematics(but especially for subjects like vector calculus, differential geometry, topology). Thanks in advance!
9. ### A Curvature of Flat Lorentz manifolds

While Minkowski space and Euclidean space both have identically zero curvature tensors it seems that a flat Lorentz manifold in general, may not admit a flat Riemannian metric. Such a manifold is the quotient of Minkowski space by the action of a properly discontinuous group of Lorentz...
10. ### I Ricci tensor for Schwarzschild metric

Hello I am little bit confused about calculating Ricci tensor for schwarzschild metric: So we have Ricci flow equation,∂tgμν=-2Rμν. And we have metric tensor for schwarzschild metric: Diag((1-rs/r),(1-rs]/r)-1,(r2),(sin2Θ) and ∂tgμν=0 so 0=-2Rμν and we get that Rμν=0.But Rμν should not equal to...
11. ### Classical Spivak's Physics for Mathematicians: Mechanics

Hello, I will be enrolling in an undergraduate Classical Mechanics course and I was wondering if the book by Spivak "Physics for Mathematicians: Mechanics" would help me understand the concepts more in depth than usual. Until the time that I will be taking the course, I will already have...
12. ### Differential Geometry book with tensor calculus

Hi, there is a book of dg of surfaces that is also about tensor calculus ? Currently i study with Do Carmo, but i am looking for a text that there is also the tensor calculus! Thank you in advance
13. ### I Do Carmo's book, chap2 Regular surfaces, definition 1.2 -- question

On chapter over regular surfaces, In definition 1 point 2. He says that x: U → V∩S is a homeomorphisms, but U⊂ℝ^2 onto V∩S⊂ℝ^3. I am confused, how can it be so!
14. ### A A question about coordinate distance & geometrical distance

As I understand it, the notion of a distance between points on a manifold ##M## requires that the manifold be endowed with a metric ##g##. In the case of ordinary Euclidean space this is simply the trivial identity matrix, i.e. ##g_{\mu\nu}=\delta_{\mu\nu}##. In Euclidean space we also have that...
15. ### Infinite cylinder covered by a single chart

Homework Statement This is a problem from Spacetime and Geometry by Carroll, Just because a manifold is topologically nontrivial doesn't necessarily mean it can't be covered with a single chart. In contrast to the circle ##S^1##, show that the infinite cylinder ##RxS^1## can be covered with...
16. ### A Manifolds: local & global coordinate charts

I'm fairly new to differential geometry (learning with a view to understanding general relativity at a deeper level) and hoping I can clear up some questions I have about coordinate charts on manifolds. Is the reason why one can't construct global coordinate charts on manifolds in general...
17. ### I Dimension of the group O(n,R) - How to calc?

Hi, I want to find the number of parameters needed to define an orthogonal transformation in Rn. As I suppose, this equals the dimension of the orthogonal group O(n,R) - but, correct me if I'm wrong. I haven't been able to figure out how to do this yet. If it helps, I know that an orthogonal...
18. ### A What is a topology intuitively?

I've recently been studying a bit of differential geometry in the hope of gaining a deeper understanding of the mathematics of general relativity (GR). I have come across the notion of a topology and whilst I understand the mathematical definition (in terms of endowing a set of points with the...
19. ### Introduction book to Differential Geometry

Hello everyone, I've 2 books on manifolds theory in e-form: 1) Spivack, calculus on manifold 2) Munkres, analysis on manifold What would be good to begin with? :oldconfused: Thank you in advance
20. ### A Metric with Harmonic Coefficient and General Relativity

Goodmorning everyone, is there any implies to use in general relativity a metric whose coefficients are harmonic functions? For example in (1+1)-dimensions, is there any implies for using a metric ds2=E(du2+dv2) with E a harmonic function? In (1+1)-dimensions is well-know that the Einstein...

47. ### Metric Tensor in R2

Hi, Want to know (i) what does Riemannian metric tensor and Christoffel symbols on R2 mean? (ii) How does metric tensor and Christoffel symbols look like on R2? It would be great with an example as I am new to this Differential Geometry.
48. ### Lie derivative of tensor field with respect to Lie bracket

I'm trying to show that the lie derivative of a tensor field ##t## along a lie bracket ##[X,Y]## is given by \mathcal{L}_{[X,Y]}t=\mathcal{L}_{X}\mathcal{L}_{Y}t-\mathcal{L}_{Y}\mathcal{L}_{X}t but I'm not having much luck so far. I've tried expanding ##t## on a coordinate basis, such that...
49. ### Riemannin generalization of the Taylor expansion

I thought about the Taylor expansion on a Riemannian manifold and guess the Taylor expansion of ##f## around point ##x=x_0## on the Riemannian manifold ##(M,g)## should be something similar to: f(x) = f(x_0) +(x^\mu - x_0^\mu) \partial_\mu f(x)|_{x=x_0} + \frac{1}{2} (x^\mu - x_0^\mu) (x^\nu -...
50. ### Checking derivation of the curvature tensor

Homework Statement I am trying to derive the curvature tensor by finding the commutator of two covariant derivatives. I think I've got it, but my head is spinning with Nablas and indices. Would anyone be willing to check my work? Thanks Homework Equations I am trying to derive the curvature...