Second quantization Definition and 63 Threads
-
P
Lancaster&Blundell "QFT Gifted Amateur" Wick theorem on Fermion Ground State
In Lancaster&Blundell QFT for the Gifted Amateur, Chaper 18, the authors introduce Wick's theorem. I have already seen it Fetter&Walecka and in here, but my problem with the theorem is that it is usually announced for interaction picture operators with time-dependences. Nevertheless in the...- pines-demon
- Thread
- Fermions Second quantization
- Replies: 0
- Forum: Advanced Physics Homework Help
-
I Who is Ballentine and why is he important in the world of quantum mechanics?
People ask me what quantum fields are. (Really...) Quantum fields are the basic stuff of physical (and all) reality, right? But, after second quantization, they are operators! I cannot get my head around this.- joneall
- Thread
- Second quantization
- Replies: 124
- Forum: Quantum Interpretations and Foundations
-
T
A Anti-commutation relation for quantized fields
Could somebody elaborate following statement from wikipedia in detail on interplay between the "choice" of anti- or commutation relation for quantized fields and the the associated statistics which the field satisfies before get quantized: Very roughly the story with second quantization is one...- The Tortoise-Man
- Thread
- Quantum mechaincs Quantum statistics Second quantization
- Replies: 13
- Forum: Quantum Physics
-
T
A Quantization of real Klein-Gordon field (sign issues)
I have a pretty naive question about quantization of real Klein-Gordon (so scalar) field ##\hat{\phi}(x,t)##. The most conventional form (see eg in this one ; but there are myriad scripts) is given by ##\hat{\phi}(x,t)= \int d^3p \dfrac{1}{(2\pi)^3} N_p (a_p \cdot e^{i(\omega_pt - p \cdot...- The Tortoise-Man
- Thread
- Quantu physics Quantum field theory Second quantization
- Replies: 24
- Forum: Quantum Physics
-
Show that an expected value of a vacuum state is equal to 1
\langle \phi_0| \hat{c}_{-k \downarrow} \hat{c}_{k \uparrow}\hat{c}^\dagger_{k \uparrow}\hat{c}_{-k \downarrow}|\phi_0\rangle = \\ \langle \phi_0| - \hat{c}_{k \uparrow} \hat{c}_{-k \downarrow} \hat{c}^\dagger_{k \uparrow}\hat{c}_{-k \downarrow}|\phi_0\rangle = \\ \langle \phi_0| \hat{c}_{k...- mcas
- Thread
- Expected value Fermions Quantom physics Second quantization State Vacuum Value
- Replies: 2
- Forum: Advanced Physics Homework Help
-
A Hamiltonian in second quantization
Hello ! I require some guidance on this prove :I normally derive the Hamiltonian for a SHO in Hilbert space with a term of 1/2 hbar omega included. However, I am unsure of how one derives this from Hilbert space to Fock space. I have attached my attempt at it as an image below. Any input will be...- hello_world30
- Thread
- Hamiltonian Quantization Quantum and general physics Second quantization
- Replies: 4
- Forum: Quantum Physics
-
A Second Quantization in QFT
In Quantum Field Theory and the Standard Model by Schwartz, he defines the Hamiltonian for the free electromagnetic field as (page 20, here's a link to the book). This follows (in my understanding) from the fact that the amplitude of the field at a given point in space oscillates as a simple...- sophiatev
- Thread
- Qft Quantization Second quantization
- Replies: 4
- Forum: Quantum Physics
-
A Dirac Field quantization and anti-commutator relation
Can anyone explain while calculating $$\left \{ \Psi, \Psi^\dagger \right \} $$, set of equation 5.4 in david tong notes lead us to $$Σ_s Σ_r [b_p^s u^s(p)e^{ipx} b_q^r†u^r†(q)e^{-iqy}+ b_q^r †u^r†(q)e^{-iqy} b_p^s u^s(p)e^{ipx}].$$ My question is how the above mentioned terms can be written as...- sakh1012
- Thread
- Dirac Dirac equation Dirac field Field Quantization Quantum field theory Relation Second quantization
- Replies: 1
- Forum: Quantum Physics
-
Second Quantization - Quasiparticles
(Simplified version of Baym, Chapter 19, Problem 2) Calculate, to first order in the inter-particle interaction V(r-r'), the energy of an N+1 particle system of spin-1/2 fermions with on particle of momentum p outside an N-particle Fermi sea (quasiparticle state). The answer should be expressed...- LarryC
- Thread
- Fermions Quantization Quantum mechanics Second quantization
- Replies: 3
- Forum: Advanced Physics Homework Help
-
Book recommendations for second quantization and Jellium model
please refer me a good book for the detail step by step study on the second quantization. and also where can I find the jellium model for the metal?- pallab
- Thread
- Book Book recommendations Model Quantization Second quantization
- Replies: 4
- Forum: Science and Math Textbooks
-
Help with second quantization practice problem
Hi, to help further my understanding of the second quantization for one of my modules I would like to show that the following expressions $$ \hat{H} = \Sigma_{ij} \langle i| \hat{T} | j \rangle \hat{a_i }^{\dagger} \hat{a_j} $$ $$\hat{\psi}(r,t)= \Sigma_k \psi_k(r) \hat{a}_k(t)$$ Obey the...- CMJ96
- Thread
- Quantization Second quantization
- Replies: 6
- Forum: Advanced Physics Homework Help
-
Bosonic annihilation and creation operators commutators
Homework Statement After proving the relations ##[\hat{b}^{\dagger}_i,\hat{b}^{\dagger}_j]=0## and ##[\hat{b}_i,\hat{b}_j]=0##, I want to prove that ##[\hat{b}_j,\hat{b}^{\dagger}_k]=\delta_{jk}##, however I'm not sure where to begin. 2. The attempt at a solution I tried to apply the...- RicardoMP
- Thread
- Annihilation Bosons Commutators Creation Operators Second quantization
- Replies: 1
- Forum: Advanced Physics Homework Help
-
Bosonic operator eigenvalues in second quantization
Homework Statement Following from \hat{b}^\dagger_j\hat{b}_j(\hat{b}_j \mid \Psi \rangle )=(|B_-^j|^2-1)\hat{b}_j \mid \Psi \rangle , I want to prove that if I keep applying ##\hat{b}_j##, ## n_j##times, I'll get: (|B_-^j|^2-n_j)\hat{b}_j\hat{b}_j\hat{b}_j ... \mid \Psi \rangle . Homework...- RicardoMP
- Thread
- Bosons Eigenvalues Operator Quantization Second quantization
- Replies: 1
- Forum: Advanced Physics Homework Help
-
A
I Understanding second quantization
Hi, I was reading a book about second quantization and there were a few things that I didn't quite understand entirely. This is what I understood so far: Given an operator ##\mathcal A## and two orthonormal bases ##|\alpha_i\rangle## and ##|\beta_i\rangle## for the Hilbert space, ##\mathcal...- acegikmoqsuwy
- Thread
- Quantization Second quantization
- Replies: 3
- Forum: Quantum Physics
-
F
A What is the difference between second quantization and QFT?
Please teach me the difference between second quantization and QFT?- fxdung
- Thread
- Difference Qft Quantization Second quantization
- Replies: 2
- Forum: Quantum Physics
-
A Derivation of the Heisenberg equation for electron density
I'm studying plasmons from "Haken-Quantum Field Theory of Solids", and i need some help in the calculation of the equation of motion of eletrons' density \begin{equation} \hat{\rho}_{\overrightarrow{q}} = \frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}}...- GiovanniNunziante
- Thread
- Condensed matter physics Density Derivation Electron Electron density Heisenberg Plasmon Second quantization Solid state physics
- Replies: 2
- Forum: Atomic and Condensed Matter
-
I Why the second quantization Hamiltonian works?
I am puzzled by the fact that a "single-particle" Hamiltonian (in the annihilation and creation operator form) may be used for a multi-particle case (non-interacting particles) or that (only) a "two-particle" Hamiltonian (in the annihilation and creation operator form) may be used for a...- MichPod
- Thread
- Hamiltonian Quantization Second quantization Works
- Replies: 1
- Forum: Quantum Physics
-
I Creation operator and Wavefunction relationship
Hello, I've noticed that some professors will jump between second quantized creation/annihilation operators and wavefunctions rather easily. For instance \Psi_k \propto c_k + ac_k^{\dagger} with "a" some constant (complex possibly). I'm fairly familiar with the second quantized notation, and...- DeathbyGreen
- Thread
- Creation Operator Relationship Second quantization Wavefunction
- Replies: 6
- Forum: Quantum Physics
-
L
Hamiltonian in terms of creation/annihilation operators
Homework Statement Consider the free real scalar field \phi(x) satisfying the Klein-Gordon equation, write the Hamiltonian in terms of the creation/annihilation operators. Homework Equations Possibly the definition of the free real scalar field in terms of creation/annihilation operators...- leo.
- Thread
- Hamiltonian Klein gordon field Ladder operators Operators Quantum field theory Scalar field Second quantization Terms
- Replies: 2
- Forum: Advanced Physics Homework Help
-
V
I Is the Fermion number operator squared equal to itself?
What the title says. Acting on a fermionic state with the number operator to a power is like acting with the fermionic operator itself. Does this allow us to define ## \hat{n}^k=\hat{n} ##? Or is there any picky mathematical reason not to do so?- voila
- Thread
- Fermion Operator Second quantization
- Replies: 9
- Forum: Quantum Physics
-
L
I Understanding the scalar field quantization
I am getting started with QFT and I'm having a hard time to understand the quantization procedure for the simples field: the scalar, massless and real Klein-Gordon field. The approach I'm currently studying is that by Matthew Schwartz. In his QFT book he first solves the classical KG equation...- leo.
- Thread
- Field Klein gordon field Ladder operators Quantization Quantum field theory Quantum fields Scalar Scalar field Second quantization
- Replies: 5
- Forum: Quantum Physics
-
N
I Eigenvalues of Fermionic field operator
Hello, I'm a bit confused about the eigenvalues of the second quantized fermionic field operators \psi(x)_a. Since these operators satisfy the condition \{\psi(x)_a, \psi(y)_b\} = 0 the eigenvalues should also anti-commute? Does this mean that the eigenvalues of \psi(x)_a are...- Neutrinos02
- Thread
- Eigenvalues Fermion Field Grassmann Operator Second quantization
- Replies: 13
- Forum: Quantum Physics
-
N
I Symmetrized Lagrangian (second quantization)
Hello, I need some help to find the correct symmetrized Lagrangian for the field operators. After some work I guess that $$\mathcal{L} = i[\overline{\psi}_a,({\partial_\mu}\gamma^\mu \psi)^a] -m[\overline{\psi}_a,\psi^a ]$$ should be the correct Lagrangian but I'm not sure with this. I'm...- Neutrinos02
- Thread
- Lagrangian Quantization Second quantization
- Replies: 3
- Forum: Quantum Physics
-
N
A Fetter & Walecka's derivation of second-quantised kinetic term....
On page 9 of *Quantum theory of many-particle systems* by Alexander L. Fetter and John Dirk Walecka, during the derivation of the second-quantised kinetic term, there is an equality equation below: >\begin{align} \sum_{k=1}^{N} \sum_{W} & \langle E_k|T|W\rangle C(E_1, ..., E_{k-1}, W...- nus_phy
- Thread
- Bosons Derivation Identical particles Kinetic Quantum field theory Quantum mechahnics Second quantization Term
- Replies: 8
- Forum: High Energy, Nuclear, Particle Physics
-
V
Solid State Books for second quantization and condensed matter
Hi. I'll be doing a master's degree in nanophysics and working on electron transport in arrays of qubits. I don't know anything (or barely) about the second quantization and would like a book which covers it, and on condensed matter overall. So far I've been told about Bruus&Flensberg's...- voila
- Thread
- Books condensed Condensed matter Condensed matter physics Matter Quantization Second quantization
- Replies: 3
- Forum: Science and Math Textbooks
-
I Second quantization and creation/annih. operators
I'd like some help with something in this introduction to second quantization ... http://yclept.ucdavis.edu/course/242/Class.html They start by considering two operators ##a## and ##a^\dagger## such that ##[a,a^\dagger]=1## and they are adjoint to each other. Also introduced is a state...- Swamp Thing
- Thread
- Operators Quantization Second quantization
- Replies: 3
- Forum: Quantum Physics
-
Second Quantization vs Many-Particle QM
Apparently, there are two different routes to get to quantum field theory from single-particle quantum mechanics: (I'm going to use nonrelativistic quantum mechanics for this discussion. I think the same issues apply in relativistic quantum mechanics.) Route 1: Many-particle quantum mechanics...- stevendaryl
- Thread
- Qft Qm Quantization Second quantization
- Replies: 67
- Forum: Quantum Physics
-
T
How Do You Calculate the Density Matrix in Second Quantization?
Homework Statement Homework Equations and attempt at solution I think I got the ground state, which can be expressed as |\Psi \rangle = \prod_{k}^{N}\hat{a}_{k}^{\dagger} |0 \rangle . Then for the density matrix I used: \langle...- tylerscott
- Thread
- Density Density matrix Matrix Quantization Second quantization
- Replies: 12
- Forum: Advanced Physics Homework Help
-
G
What is the first and second quantization?
I believe the title says it all. What is the first and second quantization? What is the difference? Thank you.- Gabriel Maia
- Thread
- Quantization Second quantization
- Replies: 3
- Forum: Quantum Physics
-
How Does the Second Quantized Field Operator Act on a Two-Fermion Wave Function?
I have a doubt on the second quantization formalism. Suppose that we have two spin-1/2 fermions which can have just two possible quantum number, 1 and 2. Consider the wave function: $$ \psi(r_1,r_2)=\frac{1}{\sqrt{2}}\left(\psi_1(r_1)\psi_2(r_2)-\psi_1(r_2)\psi_2(r_1)\right). $$ The second...- Einj
- Thread
- Operators Quantization Second quantization
- Replies: 2
- Forum: Quantum Physics
-
A
Second Quantization: Single Particle Basis States
This is just a simple question. I am reading about the second quantization but every text I read it starts with something like: suppose we have a set of single particle basis states {la1>,la2>,...,lan>}, which are used to label the wavefunction etc. I just need to make sure I understand what...- aaaa202
- Thread
- Quantization Second quantization
- Replies: 9
- Forum: Quantum Physics
-
A
Second quantization of the Schrodinger fields
Hi, I'm reading www.phys.ethz.ch/~babis/Teaching/QFTI/qft1.pdf and trying to understand the canonical quantization of the Schrodinger field. In particular, the Lagrangian: \begin{equation} \mathcal{L} = \frac{i}{2}\psi^* \partial_0 \psi - \frac{i}{2}\psi \partial_0 \psi^* +...- AlbertEi
- Thread
- Fields Quantization Schrödinger Second quantization
- Replies: 7
- Forum: Quantum Physics
-
T
Proof of second quantization operators
Please, can somebody show me why a Hamiltonian like \sum_nh(x_n) can be written as \sum_{i,j}t_{i,j}a^+_ia_j, with t_{i,j}=\int f^*_i(x)h(x)f_j(x)dx? Thank you.- Tilde90
- Thread
- Operators Proof Quantization Second quantization
- Replies: 8
- Forum: Quantum Physics
-
J
Second Quantization for Fermions: Creation Operator
So, I'm studying Second Quantization for fermions and came across this equation. I was just wondering why there is a summation needed? And why do we do it with (i≠p).? Please can someone explain this to me? Reply and help is much appreciated.- jhosamelly
- Thread
- Creation Fermions Operator Quantization Second quantization
- Replies: 6
- Forum: Quantum Physics
-
J
Second Quantization for Fermions
Please let me know if I get this right. Second Quantization for Fermions used the definition of its annihilation and creation operators instead of wavefunctions. We use second quantization to express this many body problem in a hamiltonian. Am I right? Can someone please explain this to me in...- jhosamelly
- Thread
- Fermions Quantization Second quantization
- Replies: 4
- Forum: Quantum Physics
-
L
Charge conjugation in second quantization
We know that under charge conjugation the current operator reverses the sign: \hat{C} \hat{\bar{\Psi}} \gamma^{\mu} \hat{\Psi} \hat{C} = - \hat{\bar{\Psi}} \gamma^\mu \hat{\Psi} Here \hat{C} is the unitary charge conjugation operator. I was wondering should we consider gamma matrix...- LayMuon
- Thread
- Charge Charge conjugation Quantization Second quantization
- Replies: 2
- Forum: Quantum Physics
-
F
Density matrix elements, momentum basis, second quantization
Hello everyone, I'm having some trouble, that I was hoping someone here could assist me with. I do hope that I have started the topic in an appropriate subforum - please redirect me otherwise. Specifically, I'm having a hard time understanding the matrix elements of the density matrix...- Final ansatz
- Thread
- Basis Density Density matrix Elements Matrix Momentum Quantization Second quantization
- Replies: 5
- Forum: Quantum Physics
-
M
Second quantization question: one particle or n particle?
For the simple harmonic oscillator case, the energy is E=(n+1/2)hw, and N|n>=n|n>. It seems second quantization explain it as there are n bosons with each particle has energy homework plus vacuum 1/2hw. But we know before second quantization, there is only one particle with energy nhw plus...- mings6
- Thread
- Particle Quantization Second quantization
- Replies: 1
- Forum: Quantum Physics
-
E
Second Quantization: Motivation & Field Operators
Hi,all What is the motivation of using Second Quantization ? What kind of situation does people want to use field operators ? Euphemia- Euphemia
- Thread
- Quantization Second quantization
- Replies: 8
- Forum: Quantum Physics
-
F
Path Integral in first and second quantization
Is it true that in first quantization the PI includes the possible trajectories a particle can take, but it does not include how particles can change into other kinds of particles (electrons to photons, etc). And QFT (second quantization) calculates how particles can branch off into other...- friend
- Thread
- Integral Path Path integral Quantization Second quantization
- Replies: 7
- Forum: Quantum Physics
-
Q
Understanding Second Quantization and Its Application in Quantum Mechanics
I begin with \int (\bar{\psi}(x) (\mathcal{H} \psi(x)) d^3x This is just \int (\bar{\psi}(x) ({\frac{p^2}{2M} + \frac{1}{2}M \omega^2 (x)} \psi(x)) d^3x If one identified that \bar{\psi}(x) and \psi(x) are creation and annihilation operators, I assume that I can simply restate my...- QuantumClue
- Thread
- Quantization Second quantization
- Replies: 1
- Forum: Quantum Physics
-
U
In the second quantization spin operator, what are Pauli spin vector indices?
If you look up the second quantization spin operator, you'll notice that there are two indices on the pauli vector for two possible spins. The operator sums over these two indices. Since the pauli vector is an unchanging quantity what do these indices physically correspond to?- univox360
- Thread
- Indices Operator Pauli Quantization Second quantization Spin Spin operator Vector
- Replies: 1
- Forum: Quantum Physics
-
N
Second Quantization: Explaining c^\dagger_ic_j = \delta_{i,j}c_jc^\dagger_i
Hi Say I have the following two fermionic creation/annihilation operators c^\dagger_ic_j 1) Yesterday, my lecturer said that the following is valid c^\dagger_ic_j = \delta_{i,j}c_jc^\dagger_i Can you guys explain to me, where this formula comes from? I originally thought that it was one...- Niles
- Thread
- Quantization Second quantization
- Replies: 6
- Forum: Quantum Physics
-
D
Commutators in second quantization
Hi. I've been trying to calculate a couple of commutators, namely [\Psi(r),H] and [\Psi^{\dagger}(r),H] where H is a free particle hamiltonian in second quantization. I have attached my attempts and I would greatly appreciate if anyone could tell me if I am right or if there is a better way to...- daudaudaudau
- Thread
- Commutators Quantization Second quantization
- Replies: 9
- Forum: Quantum Physics
-
H
What Are the Strange Results of Second Quantization?
Didnt seem to be many threads about this subject although I don't find it trivial at all.. Lets start with a question: If we now have <N_i - 1|â_i|N_i> = N_i^0.5 but let â operate on our ket it should give: <N_i - 1||N_i - 1> = N_i^0.5 its adjoint however is the creation operator (right?)...- Hymne
- Thread
- Quantization Second quantization
- Replies: 4
- Forum: Quantum Physics
-
N
Second Quantization: Explaining Creation/Annihilation Operator Transformation
Hi I have a question regarding second quantization. In the following link...- Niles
- Thread
- Quantization Second quantization
- Replies: 8
- Forum: Quantum Physics
-
D
Second quantization particle current
Hi. I'm reading an article which writes the following "... and the well-known expression for the charge current is" j=-\frac{ie}{m}\int dr\psi^\dagger (r)[\nabla-ieA(r)]\psi(r) Why does it have an integral sign? And when you define it this way, you integrate out the r-dependence...- daudaudaudau
- Thread
- Current Particle Quantization Second quantization
- Replies: 11
- Forum: Quantum Physics
-
D
Express arbitrary state in second quantization
How do I express an arbitrary 2-particle state in second quantization? I could write this |\psi\rangle=\sum_{mn}c_{mn} a_m^\dagger a_n^\dagger |0\rangle where c_{mn} is a constant, a_n^\dagger is the creation operator and |0\rangle is the vacuum state. The only problem is that I want to...- daudaudaudau
- Thread
- Quantization Second quantization State
- Replies: 3
- Forum: Quantum Physics
-
N
Do Fermionic Creation and Annihilation Operators Commute?
Hi guys The fermionic creating and annihiliations operators: Do they satisfy c_{i,\sigma }^\dag c_{i,\sigma }^{} = - c_{i,\sigma }^{} c_{i,\sigma }^\dag for some quantum number i and spin σ, i.e. do they commute?- Niles
- Thread
- Operators Quantization Second quantization
- Replies: 2
- Forum: Quantum Physics
-
N
Interpreting operators in second quantization
Hi guys When working with operators in second quantization, I always imagine c^\dagger_ic_j as denoting the "good old" matrix element \left\langle {i} \mathrel{\left | {\vphantom {i j}} \right. \kern-\nulldelimiterspace} {j} \right\rangle . But how should I interpret an...- Niles
- Thread
- Operators Quantization Second quantization
- Replies: 8
- Forum: Quantum Physics