What is the net electric force on the charge at the origin?

AI Thread Summary
The discussion revolves around calculating the net electric force and electric field at the origin due to three charges arranged in a triangle. The net electric force on the charge at the origin is determined to be 2.5*10^-6, with a direction of -102.38 degrees. There is confusion regarding the distinction between electric force and electric field, as part 3 requires calculating the electric field rather than the force. The electric field can be calculated using the formula E = kq/r^2 for each charge, and vector addition is necessary to find the net field. Clarification is provided that the electric field and force are different quantities, emphasizing the need for accurate calculations.
sushi362
Messages
5
Reaction score
0

Homework Statement


Consider three charges in a triangle as shown.

1. What is the net electric force on the charge at the origin?

2. What is the direction of this force(between -180 and 180)?

3. What is the magnitude of the net electric field at the position of the charge at the origin?

4. What is the direction of the net electric field?



Homework Equations



E = Kc * Q/r^2



The Attempt at a Solution



I solved part 1, to be 2.5*10^-6
part 2 is -102.38

i have no clue what to do for part 3.
once i figure that out, i should be able to do part 4.
 

Attachments

  • Screen Shot 2013-02-07 at 12.17.27 AM.png
    Screen Shot 2013-02-07 at 12.17.27 AM.png
    2.4 KB · Views: 990
Physics news on Phys.org


You listed the equation for the electric field, why not use it?
 


Net electric field is found form the electric field created by the charges.

Electric field is also a vector quantity which can be summed.

E = kq/r2

You should be able to find the electric field for each charge and through vector addition, find the net field.

Also consider: The charge at the origin does have a field, but if a test charge is at the origin too, (directly in the middle of the charge at the origin), will the test charge be affected by the field of the charge at the origin?
 


tms said:
You listed the equation for the electric field, why not use it?

so #3 is the same as #1?

i used the equation to calculate the e field for the 2 points: origin to the right of the origin, and origin to south of origin. then i took the square root of the squares of those values, and got part 1 again?
 


sushi362 said:
so #3 is the same as #1?
No. #1 wants the force while #3 wants the field. They aren't the same. The equation you wrote down under "Relevant equations" is for the field.

Show us your calculations.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top