Hello! (Wave)Let the (linear) differential equation $y'+ay=b(x)$ where $a>0, b$ continuous on $[0,+\infty)$ and $\lim_{x \to +\infty} b(x)=l \in \mathbb{R}$.
Show that each solution of the differential equation goes to $\frac{l}{a}$ while $x \to +\infty$,
i.e. if $\phi$ is any solution of...