Three unit circles $C_1$, $C_2$ and $C_3$ in a plane have the property that each circle passes through the centres of the other two. A square $ABCD$ surrounds the three circles in such a way that each of its four sides is tangent to at least one of $C_1$,$C_2$ and $C_3$. $A=(0,0)$, $B=(a,0)$...