Linear algebra Definition and 999 Threads

  1. K

    Linear algebra, find a basis for the quotient space

    Let V = C[x] be the vector space of all polynomials in x with complex coefficients and let ##W = \{p(x) ∈ V: p (1) = p (−1) = 0\}##. Determine a basis for V/W The solution of this problem that i found did the following: Why do they choose the basis to be {1+W, x + W} at the end? I mean since...
  2. J

    I Properties of a unitary matrix

    So let's say that we have som unitary matrix, ##S##. Let that unitary matrix be the scattering matrix in quantum mechanics or the "S-matrix". Now we all know that it can be defined in the following way: $$\psi(x) = Ae^{ipx} + Be^{-ipx}, x<<0$$ and $$ \psi(x) = Ce^{ipx} + De^{-ipx}$$. Now, A and...
  3. L

    MHB Connecting linear algebra concepts to groups

    The options are $$rank(B)+null(B)=n$$ $$tr(ABA^{−1})=tr(B)$$ $$det(AB)=det(A)det(B)$$ I'm thinking that since it's invertible, I would focus on the determinant =/= 0. I believe the first option is out, because null (B) would be 0 which won't be helpful. The second option makes the point that...
  4. MexChemE

    My first proof ever - Linear algebra

    First, a little context. It's been a while since I last posted here. I am a chemical engineer who is currently preparing for grad school, and I've been reviewing linear algebra and multivariable calculus for the last couple of months. I have always been successful at math (at least in the...
  5. U

    Other Which Introductory Linear Algebra Book Is Best for Aspiring Engineers?

    Hello I am looking for an introductory linear algebra book. I attend university next year so I want to prepare and I want to become an engineer. I have a good background in the prerequisites, except I don't know anything about matrices or determinants. I am looking for the more application side...
  6. Demandish

    Introductory Linear Algebra Texts

    I am currently enrolled in Multivariate Calculus and am looking to get build up a solid base of mathematics for undergraduate physics curriculum. I am looking for a Linear algebra book that will aid me in my quest. I currently own Axler's Linear Algebra Done Right, but I fear it is too...
  7. S

    Setting Free variables when finding eigenvectors

    upon finding the eigenvalues and setting up the equations for eigenvectors, I set up the following equations. So I took b as a free variable to solve the equation int he following way. But I also realized that it would be possible to take a as a free variable, so I tried taking a as a free...
  8. S

    Solving a Problem in My Assignment: X1, X2, and X3

    This is just a small part of a question I have in my assignment and I'm not sure how to solve it, nothing in my eBook or our presentation slides hints at a similar problem, what I tried was I noticed that X1 and X2 have the difference of (3,3,3) and I assume either X3 = (3,3,3) or X3 = (7,8,9)...
  9. S

    Matrix concept Questions (invertibility, det, linear dependence, span)

    I have a trouble showing proofs for matrix problems. I would like to know how A is invertible -> det(A) not 0 -> A is linearly independent -> Column of A spans the matrix holds for square matrix A. It would be great if you can show how one leads to another with examples! :) Thanks for helping...
  10. X

    Introduction to Linear Algebra: Solving Real-World Problems

    Summary:: Linear algebra 1.Let a a fixed vector of the Euclidean space E, a is a fixed real number. Is there a set of all vectors from E for which (x, a) = d the linear subspace E / 2. Let nxn be a matrix A that is not degenerate. Prove that the characteristic polynomials f (λ) of the matrix A...
  11. MidgetDwarf

    I Explanation of a Line of a proof in Axler Linear Algebra Done Right 3r

    ∈Was wondering if anyone here could help me with an explanation as to how Axler arrived at a particular step in a proof. These are the relevant definitions listed in the book: Definition of Matrix of a Linear Map, M(T): Suppose ##T∈L(V,W)## and ##v_1,...,v_n## is a basis of V and ##w_1...
  12. A

    MHB Is $2 + 8\sqrt{-5}$ a Unit or Irreducible in $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$?

    prove that $2+8{\sqrt{-5}}$ is unit and irreducible or not in $\mathbb Z+\mathbb Z{\sqrt{-5}}$.
  13. A

    MHB Introduction to linear algebra

    prove that u(z+zw)={+1,-1,+w,-w,+w^2,-w^2}
  14. SpaceMonkeyCaln

    [Linear Algebra] Matrix Transformations

    Evening, The reason for this post is because as the title suggests, I have a question concerning matrix transformation. These are essentially test prep problems and I am quite stuck to be honest. Here are the [questions](https://prnt.sc/riq7m0) and here are the...
  15. G

    Fast pentadiagonal matrix solver

    Hello, I'm currently writing a numerical simulation code for solving 2D steatdy-state heat conduction problems (diffusion equation). After reading and following these two book references (Numerical Heat Transfer and Fluid Flow from Patankar and And Introduction to Computational Fluid Dynamics...
  16. Mondayman

    Linear Algebra What are some recommended second texts for self-studying linear algebra?

    Hello folks, I am currently finishing up a class on linear algebra, covering vector spaces, bases and dimension, geometry of n-dimensional space, linear transformations and systems of linear equations. I am only getting accustomed to proof writing for the first time in this course. However, I...
  17. B

    Question about linear transformations

    Summary:: linear transformations Hello everyone, firstly sorry about my English, I'm from Brazil. Secondly I want to ask you some help in solving a question about linear transformations. Here is the question:Consider the linear transformation described by the matrix \mathsf{A} \in \Re...
  18. Lauren1234

    Proving Spectrums: K6-$\lambda$I Matrix Trace

    This is my solution so far however I’m not sure where to go from here I think it’s something to do with the trace of the matrix but. This is the full solution but I did row reduction on the matrix K6- $lambda$I
  19. M

    Help with a Linear Algebra problem please

    For the following statement: V = R ≥ 1; x ⊕ y = max (x,y), with z = 1 My attempt is as follows: Should R3 be z ⊕ (x ⊕ y)? I am confused at to the notation of this rule. Moreover, I am struggling to find examples and answers of such problems in linear algebra online. Should I always view such...
  20. Avatrin

    3D geometry exercises with linear algebra

    Hi I have noticed that while I have the grasp of the theoretical underpinnings of linear algebra, I need work on applying it to geometric problems (think computer vision and rigid body motion). So, I am looking for a book that allows me to practice 3D geometry problems. Is there any obvious...
  21. Lauren1234

    Is this matrix a non-abelian group?

    I know for a group to be abelian a*b=b*a I tried multiplying the matrix by itself also but I’m not sure what I’m looking for. picture is below of the matrix https://www.physicsforums.com/attachments/255812
  22. Lauren1234

    I Linear Isomorphisms: Understand & Apply

    how would I go about answering the above question I need some pointers on how to start?
  23. Lauren1234

    I Proving Linear Transformation of V with sin(x),cos(x) & ex

    Let A={ex,sin(x),excos(x),sin(x),cos(x)} and let V be the subspace of C(R) equal to span(A). Define T:V→V,f↦df/dx. How do I prove that T is a linear transformation? (I can do this with numbers but the trig is throwing me).
  24. JD_PM

    Matrix representation of a linear mapping

    I know that to go from a vector with coordinates relative to a basis ##\alpha## to a vector with coordinates relative to a basis ##\beta## we can use the matrix representation of the identity transformation: ##\Big( Id \Big)_{\alpha}^{\beta}##. This can be represented by a diagram: Thus note...
  25. A

    Matrix which reverses Gram-Schmidt - Linear Algebra

    My idea was to write out the formulas for the orthogonal q vectors in terms of the input vectors using the basics of gram-schmidt. Then, I would rewrite those equations suhc that the a vectors were written in terms of the q vectors. And then, try to find some matrix which would capture the...
  26. S

    Find the sampling matrix and sampling structure for R, G and B components

    Hello, everyone. :) All I could gather is that, if I'm correct, lattices are spans of the column vectors of the matrix within the "LAT()" notation and the X and Y occurrences are unit placeholders (such as the pixel unit (since this is in the context of image processing)). And, as an attempt...
  27. A

    I Meaning of each member being a unit vector

    Summary: Meaning of each member being a unit vector, and how the products of each tensor can be averaged. Hello! I am struggling with understanding the meaning of "each member is a unit vector": I can see that N would represent the number of samples, and the pointy bracket represents an...
  28. christang_1023

    Decompose Involutory Matrix into Difference of Two Idempotents

    I feel confused about proving the two terms are idempotents.
  29. T

    Simplifying a matrix algebra equation (revised)

    I have a matrix equation (left side) that needs to be formatted into another form (right side). I've simplified the left side as much as I could but can't seem to get it to the match the right side. I am unsure if my matrix algebra skills are lacking or if I somehow messed up the starting...
  30. S

    Understanding Eigenvectors: Solving for Eigenvalues and Corresponding Vectors

    Okay so I found the eigenvalues to be ##\lambda = 0,-1,2## with corresponding eigenvectors ##v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} ##. Not sure what to do next. Thanks!
  31. C

    Schools Where should I take my calculus and linear algebra online?

    Has anyone taken these two courses online in a self-paced course for credit? If so, where and how was it in terms of quality? How about price? Opinions/thoughts are much appreciated. I'm working and the closest community college is a commute away, so that's out. I'm finding $1100-3000~ for...
  32. Eclair_de_XII

    If you were a linear algebra teacher, would you dock points for this?

    Let's say you were proctoring some test that required proofs of Jordan canonical forms and rational canonical forms. Would you dock points from a lazy student abbreviating the former as "J-canonical forms" and the latter as "##\mathbb{Q}##-canonical forms" in their proofs?
  33. F

    Python Invert a matrix from a 4D array : equivalence or difference with indexes

    I have a 4D array of dimension ##100\text{x}100\text{x}3\text{x}3##. I am working with `Python Numpy. This 4D array is used since I want to manipulate 2D array of dimensions ##100\text{x}100## for the following equation (it allows to compute the ##(i,j)## element ##F_{ij}## of Fisher matrix) ...
  34. G

    MHB Solve linear algebra equation 2x – 1 = 9 – 3x

    Hi, Could someone help me with this question: 2x – 1 = 9 – 3x Thank you in advance!
  35. E

    Expectation value of operators and squeezing in the even cat state

    I started and successfully showed that the expectation of X_1 and X_2 are zero. However the expectation value of X1^2 and X2^2 which I am getting is <X1^2> = 0.25 + \alpha^2 and <X2^2> = 0.25. How do I derive the given equations?
  36. bluesky314

    I Question about an eigenvalue problem: range space

    A theorem from Axler's Linear Algebra Done Right says that if 𝑇 is a linear operator on a complex finite dimensional vector space 𝑉, then there exists a basis 𝐵 for 𝑉 such that the matrix of 𝑇 with respect to the basis 𝐵 is upper triangular. In the proof, he defines U=range(T-𝜆I) (as we have...
  37. M

    Proof a property for a 3x3 matrix

    Let a 3 × 3 matrix A be such that for any vector of a column v ∈ R3 the vectors Av and v are orthogonal. Prove that At + A = 0, where At is the transposed matrix.
  38. RikaWolf

    I Linear Algebra - Inner Product problem

    I need help to know if I'm on the right track: Prove/Disprove the following: Let u ∈ V . If (u, v) = 0 for every v ∈ V such that v ≠ u, then u = 0. (V is a vector-space) I think I need to disprove by using v = 0, however I'm not sure.
  39. synMehdi

    I Linear least squares regression for model matrix identification

    Summary: I need to Identify my linear model matrix using least squares . The aim is to approach an overdetermined system Matrix [A] by knowing pairs of [x] and [y] input data in the complex space. I need to do a linear model identification using least squared method. My model to identify is a...
  40. M

    Linear Algebra: LU Decomposition

    Here is the initial matrix M: M = \begin{bmatrix} 3 & 1 & 6 \\ -6 & 0 & -16 \\ 0 & 8 & -17 \end{bmatrix} I have used the shortcut method outlined in this youtube video: LU Decomposition Shortcut Method. Here are the row reductions that I went through in order to get my U matrix: 1. R_3 -...
  41. U

    Vector space has dimension less than d

    Homework Statement Problem given to me for an assignment in a math course. Haven't learned about roots of unity at all though. Finding this problem super tricky any help would be appreciated. Screenshot of problem below. [/B] Homework Equations Unsure of relevant equations The Attempt at...
  42. GlassBones

    Isomorphisms preserve linear independence

    Homework Statement Let ##T:V \rightarrow W## be an ismorphism. Let ##\{v_1, ..., v_k\}## be a subset of V. Prove that ##\{v_1, ..., v_k\}## is a linearly independent set if and only if ##\{T(v_1), ... , T(v_2)\}## is a linearly independent set. Homework EquationsThe Attempt at a Solution...
  43. A

    A The product of a matrix exponential and a vector

    Hello everybody! I was studying the Glashow-Weinberg-Salam theory and I have found this relation: $$e^{\frac{i\beta}{2}}\,e^{\frac{i\alpha_3}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}}\, \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\ v \\ \end{pmatrix} =...
  44. H

    MHB Linear Algebra Rank of a Matrix Problem

    Let A be a n x n matrix with complex elements. Prove that the a(k) array, with k ∈ ℕ, where a(k) = rank(A^(k + 1)) - rank(A^k), is monotonically increasing. Thank you! :)
  45. Eclair_de_XII

    Linear Algebra Can anyone recommend an advanced linear algebra book?

    I have already taken two elementary linear algebra courses, and have taken the upper-division linear algebra course offered at my school. However, I feel that I did not learn as much from the latter as I should have. I can owe this to not applying myself as much as I should have, due to other...
  46. TachyonLord

    B How do I improve my proof writing style?

    So I've taken this Linear Algebra class as an elective. So there's stuff that is so obvious and logically/analytically easy to prove but I honestly don't understand how to prove them using the standard way. So what should I do about this ? And I really like linear algebra so I don't want to mess...
  47. V

    Final Grades for Linear Algebra Course

    Homework Statement Consider the below vector x, which you can copy and paste directly into Matlab. The vector contains the final grades for each student in a large linear algebra course. x = [59 70 83 89 72 70 54 55 68 61 61 58 75 54 65 55 62 39 43 53 67 100 60 100 61 100 77 60 69 91 82 71 72...
  48. S

    I Can't understand a step in an LU decomposition proof

    I'm reading about the LU decomposition on this page and cannot understand one of the final steps in the proof to the following: ---------------- Let ##A## be a ##K\times K## matrix. Then, there exists a permutation matrix ##P## such that ##PA## has an LU decomposition: $$PA=LU$$ where ##L## is a...
  49. GlassBones

    How to show a subspace must be all of a vector space

    Homework Statement Show that the only subspaces of ##V = R^2## are the zero subspace, ##R^2## itself, and the lines through the origin. (Hint: Show that if W is a subspace of ##R^2## that contains two nonzero vectors lying along different lines through the origin, then W must be all of...
  50. GlassBones

    Formulation of a proof of subspaces

    Homework Statement Let W be a subspace of a vector space V, let y be in V and define the set y + W = \{x \in V | x = y +w, \text{for some } w \in W\} Show that y + W is a subspace of V iff y \in W. Homework Equations The Attempt at a Solution Let W be a subspace of a vector space V, let y...
Back
Top