In this problem, Spivak shows how to derive formulas to summations. They start by showing the method for
1^2 + 2^2 + ... + n^2 as follows:
(k + 1)^3 - k^3 = 3k^2 + 3k + 1
Writing this formula for k = 1, 2, ..., n and adding, we obtain
2^3 - 1^3 = 3*1^2 + 3*1 + 1
3^3 - 2^3 = 3*2^2 + 3*2 + 1
...