Conjugate Definition and 247 Threads
-
MHB Path dependance of complex conjugate
Hi, an exercise asks to show that $ \int_{0,0}^{1,1} {z}^{*}\,dz $ depends on the path, using the 2 obvious rectangular paths. So I did: $ \int_{c} {z}^{*}\,dz = \int_{c}(x-iy) \,(dx+idy) = \int_{c}(xdx + ydy) + i\int_{c}(xdy - ydx) = \frac{1}{2}({x}^{2} + {y}^{2}) |_{c} + i(xy - yx)|_{c}...- ognik
- Thread
- Complex Complex conjugate Conjugate Path
- Replies: 16
- Forum: Topology and Analysis
-
MHB Understanding the Concept of Double Conjugate in Complex Functions
Hi, I am not sure what $ {f}^{*}({z}^{*}) $ means? I think the '*'s cancel, ie $ {f}(z) = u(x,y) + iv(x,y), \: \therefore f({z}^{*}) = u(x,y) - iv(x,y), , \: \therefore {f}^{*}({z}^{*}) = u(x,y) + iv(x,y) $ ? Thanks- ognik
- Thread
- Confusion Conjugate
- Replies: 2
- Forum: Topology and Analysis
-
Chemistry Moles of a conjugate base in a buffer solution
Homework Statement You need to produce a buffer solution that has a pH of 5.70. You already have a solution that contains 0.0200 moles of acetic acid. Using the Henderson-Hasselbalch equation calculate the moles of sodium acetate needed to create a buffer with the desired pH? The Ka of acetic...- alr1014
- Thread
- Base Buffer Conjugate Moles
- Replies: 7
- Forum: Biology and Chemistry Homework Help
-
Stats posterior probability gamma conjugate family
Question Find the posterior probability that the next two observations y4 and y5 will both be zero? Where the prior distribution is a gamma with parameters (a,b) and the sample is of size of 3 taking from a poisson disribution with parameter V. So far I have shown that the posterior...- binbagsss
- Thread
- Conjugate Gamma Probability Stats
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
K
MHB Conjugating Subgroups: Proving |X_K| Divides |K|
I have answered all parts of the following question except for the very last sentence: 'Conclude that the number of elements in X_K is a divisor of |K|.' MY THOUGHTS Presumably I must argue that ord(K*) divides ord(K). Clearly Ord(K*) =< ord (K). Also I can show that for any element Na in...- Kiwi1
- Thread
- Conjugate
- Replies: 2
- Forum: Linear and Abstract Algebra
-
B
MHB Could you explain me about 'relation algebraic property with conjugate'?
Hello everyone. At first, I appreciate your click this page. I have a book named 'A first Course in Abstract Algebra 7th' by Fraleigh. I have a question about 'relation algebraic property with conjugate' in automorhisms of fields. in page415, this book explains "Let E is algebraic extension...- bw0young0math
- Thread
- Conjugate Explain Property
- Replies: 2
- Forum: Linear and Abstract Algebra
-
Visualising the Conjugate Transposition of a Vector
Hi there! As you might have already guessed, I'm referring primarily to the 'geometrical' difference (is there such geometry in Hilbert space?) between ##n##-dimensional state vectors | \psi \rangle = \left( \begin{matrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{matrix} \right) and their...- H Smith 94
- Thread
- Conjugate Mathematics Matrices States Vector Vectors
- Replies: 5
- Forum: Quantum Physics
-
N
Repeated complex conjugate roots for Cauchy-Euler
Looking for the general equation for repeated complex conjugate roots in a 4th order Cauchy Euler equation. This is incorrect, but I think it is close: X^alpha [C1 cos(beta lnx) + C2 sin(beta lnx)^2] I think that last term is a little off. Maybe C2 sin [beta (lnx)] lnx ?- N@te
- Thread
- Complex Complex conjugate Conjugate Roots
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
K
MHB Prove One-to-One Correspondence Conjugate Subgroups & Cosets N
Q. Prove there is a one-to-one correspondence between the set of conjugates of H and the set of cosets of N. I have a solution to this below but am not sure if it is correct. In particular I am not sure if my definition 'f' is satisfactory. This is self study and not any kind of homework. I...- Kiwi1
- Thread
- Conjugate
- Replies: 1
- Forum: Linear and Abstract Algebra
-
T
Hermitian conjugate of a Hermitian Conjugate
I know that (A\mp )\mp =A . Where A is an Hermitian operator How does one go about proving this through the standard integral to find Hermitian adjoint operators? I should mention, I don't want anyone to just flat out show me step by step how to do it. I'd just like a solid starting place...- teaJ
- Thread
- Conjugate Hermitian
- Replies: 3
- Forum: Quantum Physics
-
Calculate Complex Conjugate of Ψ(x,t) for x=4, t=9
I'm just starting this, but what would the complex conjugate of Ψ(x,t) in the equation : |Ψ(x,t)|^2= Ψ(x,t)* Ψ(x,t) be.. Let's just say, for example, that x is 4 and t is 9... Please help if you can.. Could you please help me out with the steps to completing this, because I really want to...- LachyP
- Thread
- Complex Complex conjugate Complex numbers Conjugate Probability Quantum mechanics Quantum phyics
- Replies: 8
- Forum: Quantum Physics
-
K
MHB Proof of Conjugate Cycles Property of Permutations
Prove: Let \alpha = (a_1,...,a_s) be a cycle and let \pi be a permutation in Sn. Then \pi \alpha \pi ^{-1} is the cycle (\pi(a_1), ... \pi(a_s)) My attempt. (\pi \alpha \pi ^{-1})^s = (\pi \alpha^s \pi ^{-1})=e so if this thing is a cycle and its length divides s. Assume \pi (a_1) is a...- Kiwi1
- Thread
- Conjugate Cycles
- Replies: 1
- Forum: Linear and Abstract Algebra
-
Why do the conjugate classes of a group partition the group?
Given an element a in a group G, class(a) = {all x in G such that there exists a g in G such that gxg^(-1) = a} class(b) = {all x in G such that there exists a g in G such that gxg^(-1) = b} so let's say y is a conjugate of both a and b, so it is in both class(a) and class(b), does that mean...- PsychonautQQ
- Thread
- Classes Conjugate Group Partition
- Replies: 1
- Forum: Linear and Abstract Algebra
-
Complex conjugate proof, i think
Homework Statement prove that sqrt2|z| greater than or equal to |Rez| + |Imz| Homework Equations |z|^2 = x^2 + y^2 Rez=x, Imz=yThe Attempt at a Solution so far I've worked it down to this. 2(x^2 + y^2) greater than or equal to x^2 + 2xy + y^2 I've used a few different values for x and y and...- nmsurobert
- Thread
- Complex Complex conjugate Conjugate Proof
- Replies: 17
- Forum: Precalculus Mathematics Homework Help
-
L
Hermitian conjugate of outer product
Homework Statement In Sakurai's Modern Physics, the author says, "... consider an outer product acting on a ket: (1.2.32). Because of the associative axiom, we can regard this equally well as as (1.2.33), where \left<\alpha|\gamma\right> is just a number. Thus the outer product acting on a ket...- loginorsinup
- Thread
- Braket notation Conjugate Hermitian Outer product Product Quantum mechanics
- Replies: 5
- Forum: Advanced Physics Homework Help
-
G
Quantizing the conjugate operator to adjoint operator
If you have the product of two Grassman numbers C=AB, and take the conjugate, should it be C*=A*B*, or C*=B*A*? The general rule for operators, whether they are Grassman operators (like the Fermion field operator) or the Bose field operator, I think is (AB)^dagger=B^dagger A^dagger. This...- geoduck
- Thread
- Conjugate Operator
- Replies: 1
- Forum: Quantum Physics
-
J
Light photons, color and energies of molecules.
Hi, so I'm a first year neuroscience student at Carelton University in Canada. I had a little bit of a "revelation" with this topic recently after I understood it a bit better and I think this is really interesting. (If I understand it correctly!) We're learning about Kekule structures... -
D
MHB Finding the Conjugate Function of u for f to be Analytic
\(u = 2x(1 - y)\) I want to find v such that \(f = u +iv\) is analytic. The hint is find the conjugate function of u. I am not sure if what I did was finding the conjugate function of u thoug. \[ u_x = 2(1 - y) = v_y \] so \[ v = 2y - y^2 + g(x) \Rightarrow v_x = g'(x) \] and \[ u_y = -2x =...- Dustinsfl
- Thread
- Conjugate Function
- Replies: 2
- Forum: Topology and Analysis
-
Complex Conjugate of f(z) = -(1-z)/(1+z)
Homework Statement Find U(x,y) and V(x,y) for f(z) = -(1-z)/(1+z) Find Ux, Vy, Vx, Uy (partial derivatives) Homework Equations z = (x+iy) The Attempt at a Solution I found U(x,y) and V(x,y), and I used the quotient rule to find the partial derivatives Ux, Vy. They should be...- KleZMeR
- Thread
- Complex Complex conjugate Conjugate
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
Complex Conjugate Vector Space
I'm confused about some of the notation in Hoffman & Kunze Linear Algebra. Let V be the set of all complex valued functions f on the real line such that (for all t in R) f(-t) = \overline{f(t)} where the bar denotes complex conjugation. Show that V with the operations (f+g)(t) = f(t) +...- dkotschessaa
- Thread
- Complex Complex conjugate Conjugate Space Vector Vector space
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
Topologically conjugate function
Homework Statement Are f(x)=2x, x\in R and g(x)=x^2, x>0 topologically conjugate? i.e. does there exist an h(x) such that h(g(x))=f(h(x))The Attempt at a Solution My professor gave one example in class about finding such a function h which was by guessing it to be equal to xn and...- Mentallic
- Thread
- Conjugate Function
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
C
Geodesic Conjugate Points Explained
Dear all, I was reading "Nature of space and time" By Penrose and Hawking pg.13, > If $$\rho=\rho_0$$ at $$\nu=\nu_0$$, then the RNP equation > > $$\frac{d\rho}{d\nu} = \rho^2 + \sigma^{ij}\sigma_{ij} + \frac{1}{n} R_{\mu\nu} l^\mu l^\nu$$ implies that the convergence $$\rho$$ will become...- cr7einstein
- Thread
- Conjugate Geodesic Points
- Replies: 3
- Forum: Special and General Relativity
-
J
Conjugate Subgroups of a Finite Group
Homework Statement Two subgroups of G, H and K are conjugate if an element a in G exists such that aHa^-1= {aha^-1|elements h in H}= K Prove that if G is finite, then the number of subgroups conjugate to H equals |G|/|A|. Homework Equations A={elements a in G|aHa^-1=H} The Attempt...- Justabeginner
- Thread
- Conjugate Finite Group
- Replies: 23
- Forum: Calculus and Beyond Homework Help
-
D
Hermitian conjugate of the annihilation operator
Hi I have been looking at the solutions to a past exam question. The question gives the annihilation operator for the harmonic oscillator as a= x + ip ( I have left out the constants ). The question then asks to calculate the Hermitian conjugate a(dagger). I thought to find the Hermitian...- dyn
- Thread
- Annihilation Conjugate Hermitian Operator
- Replies: 6
- Forum: Quantum Physics
-
Complex conjugate of a wavefunction
Let ψ be a wavefunction describes the quantum state of a particle at any (x,t), What does ψ* i.e, the complex conjugate of a wavefunction means? I only know probability of finding a particle is given by ∫|ψ|^2 dx= ∫ ψ*ψ dx But what does ψ*ψ really means? I started learning QM with Griffiths...- Muthumanimaran
- Thread
- Complex Complex conjugate Conjugate Wavefunction
- Replies: 6
- Forum: Quantum Physics
-
Charge Conjugate of the Vacuum
What is the result of the charge conjugation acting on the state of vacuum? C|0>=... I have two intuitive problems... If I see the vacuum as something which has no particles, then the charge conjugate would have to lead in the vacuum itself... C|0>=|0> However, if I think of the vacuum as the...- ChrisVer
- Thread
- Charge Conjugate Vacuum
- Replies: 2
- Forum: High Energy, Nuclear, Particle Physics
-
P
Hermitian conjugate of Dirac field bilinear
In the standard QFT textbook, the Hermitian conjugate of a Dirac field bilinear \bar\psi_1\gamma^\mu \psi_2 is \bar\psi_2\gamma^\mu \psi_1. Here is the question, why there is not an extra minus sign coming from the anti-symmetry of fermion fields?- phypar
- Thread
- Conjugate Dirac Dirac field Field Hermitian
- Replies: 7
- Forum: High Energy, Nuclear, Particle Physics
-
Sequential measurements of conjugate observables
There is an argument that accurate sequential measurement of conjugate observables A and B on the same state is possible if the state is an eigenstate of one of the observables. When the state is an eigenstate of A, an accurate measurement of A will not disturb the state, so B can then be...- atyy
- Thread
- Conjugate Measurements observables
- Replies: 21
- Forum: Quantum Physics
-
B
Complex conjugate of a complicated function
Hi, I know if we have a complex number z written as z = x +iy , with a and real, the complex conjugate is z* = x - iy. Also if we write a complex function f(z) = u(x,y) + iv(x,y), with u and v real valued, then similarly the complex conjugate of this function is f(z)* = u(x,y) - iv(x,y)...- BomboshMan
- Thread
- Complex Complex conjugate Conjugate Function
- Replies: 1
- Forum: General Math
-
C
The weak acid conjugate base - something i can't understand.
I seem to have a problem understanding this: If 1% of a weak acid dissociates in pure water. I would assume that 99% of it’s conjugate base would dissociate to form HA in pure water, but this is not the case: I tried to set up a situation below: Please help me understand what I’m...- christian0710
- Thread
- Acid Base Conjugate Weak
- Replies: 4
- Forum: Chemistry
-
F
Derivative of the complex conjugate of z with respect to z
Hi all! From Wirtinger derivatives, given z=x+iy and indicating as \overline{z} the complex conjugate, I get: \frac{\partial\overline{z}}{\partial z}=\frac{1}{2}\left(\frac{\partial (x-iy)}{\partial x}-i\frac{\partial (x-iy)}{\partial y}\right)=0 This puzzles me, because I cannot see why a...- fairy._.queen
- Thread
- Complex Complex conjugate Conjugate Derivative
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
B
Max Conjugate Base: Find pH w/ Sum of pKa's
I have seen it thrown around a lot that the pH at which concentration of a conjugate base is at a maximum can be found by adding up the 2 pKa's whose reactions that base is involved in and dividing by 2. But I tried differentiating and this only appears to be the case for HA- maximum... -
S
Complex Conjugate of the comb function
Homework Statement This is not exactly a HW problem but related to my thesis work where I am deriving an expression for the intensity of light after a particular spatial filtering. I have: I(x) = \left[ comb(2x) \ast e^{i\Phi(x)} \right] \left[ comb^*(2x) \ast e^{-i\Phi(x)} \right] Where...- sahand_n9
- Thread
- Complex Complex conjugate Conjugate Function
- Replies: 1
- Forum: Advanced Physics Homework Help
-
&
Question on derivatives of Hermitian conjugate scalar fields
Hi, I know this question may seem a little trivial, but is there any real difference between \left (\partial_{\mu} \phi \right)^{\dagger} and \partial_{\mu} \phi^{\dagger} and if so, could someone provide an explanation? Many thanks. (Sorry if this isn't quite in the right...- "Don't panic!"
- Thread
- Conjugate Derivatives Fields Hermitian Scalar Scalar fields
- Replies: 4
- Forum: Quantum Physics
-
J
What is the dot product of complex conjugate vectors?
what is the dot product of two complex conjugate vectors?- janu203
- Thread
- Complex Complex conjugate Conjugate Vectors
- Replies: 3
- Forum: Electrical Engineering
-
J
Digital signal processing - conjugate reciprocal of a complex number
Digital signal processing -- conjugate reciprocal of a complex number what is the difference between conjugate of a complex number and conjugate reciprocal of a complex number i am asking with reference to z transform...Thanyou- janu203
- Thread
- Complex Complex number Conjugate Digital Digital signal processing Processing Reciprocal Signal Signal processing
- Replies: 4
- Forum: Electrical Engineering
-
H
Difference between the A conjugate and A dagger
Hi guys, getting a little confused whilst looking through a paper. I was hoping someone could clear this up for me quickly; If we have a matrix denoted by the following, which is both real and unitary; Amn then is the following true (due to it being real, the conjugate just produces the...- Hazzattack
- Thread
- Conjugate Difference
- Replies: 4
- Forum: Linear and Abstract Algebra
-
N
MHB Find Complex Conjugate of 1/(1+e^(ix))
Good Day, I would like to know how to find the complex conjugate of the complex number 1/(1+e^(ix)). I got (1+e^(-(ix)))/(2+2 cos x) but the solution is 0.5 sec (x/2) e^(i(x/2)). Any help will be greatly appreciated. Thanks & Regards P.S. Apologies for not using LATEX as it was formatting...- nicodemus1
- Thread
- Complex Complex conjugate Conjugate
- Replies: 3
- Forum: General Math
-
L
Commutator Relations; Conjugate Product of a Dimensionless Operator
Consider the following commutator for the product of the creation/annihilation operators; [A*,A] = (2m(h/2∏)ω)^1 [mωx - ip, mωx + ip] = (2m(h/2∏)ω)^1 {m^2ω^2 [x,x] + imω ([x,p] - [p,x]) + [p,p]} Since we have the identity; [x,p] = -[p,x] can one assume that.. [x,p] - [p,x] =...- lukka
- Thread
- Commutator Conjugate Operator Product Relations
- Replies: 2
- Forum: Quantum Physics
-
M
Integrating exponetial of z over the conjugate of z
Im doing some complex variable "counter integration" problems and this one came up. I = \oint e ^{\frac{z}{\overline{z}}}dz the integral must be done over a circle with radio r My first attempt was to do it in the exponetial form, so we have this: \frac{z}{\overline{z}} =...- marqeeete
- Thread
- Conjugate
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
5
How are Entropy and Temperature conjugate variables?
Can someone conceptually explain to me how Temperature and Entropy are conjugate variables? I would imagine that Temperature and Internal Energy would be more appropriate, as I understand Heat flow causes changes in Internal Energy, some of which is used to change the translational motion of...- 541099
- Thread
- Conjugate Entropy Temperature Variables
- Replies: 4
- Forum: Thermodynamics
-
A
Proof about complex conjugate of a function
Hi, I need to understand the proof about complex conjugate of a function. g(z) = g*(z*) I don't know what it it called in English and can't search for it. If anyone knows where can I get the proof, please let me know. Thanks for help.- anhnha
- Thread
- Complex Complex conjugate Conjugate Function Proof
- Replies: 7
- Forum: General Math
-
S
Function multiplied by its complex conjugate
Hi Guys, I have two questions which kind of relate. The first relates to the complex conjugate of a function. Specifically, When a function is multiplied by its complex conjugate, what does that mean physically? For instance, I am reading a book on electromagnetic wave scattering, and often...- Steve Drake
- Thread
- Complex Complex conjugate Conjugate Function
- Replies: 4
- Forum: Classical Physics
-
G
Field and conjugate independent?
I'm having trouble figuring out how a field and it's conjugate are independent quantities. How can they be, when they are related by conjugation? Suppose you have real fields x and y, and form fields: L=(x+iy)/sqrt2 R=(x-iy)/sqrt2 In a path integral, you'd have .5(∂x∂x+∂y∂y) in your...- geoduck
- Thread
- Conjugate Field Independent
- Replies: 4
- Forum: Quantum Physics
-
N
Complex Conjugate of a Function
Homework Statement Hi I have a complex function of the form \frac{1}{1-Ae^{i(a+b)}} I want to take the complex conjugate of this: The parameters a and b are complex functions themselves, but A is real. Am I allowed to simply say \frac{1}{1-Ae^{-i(a^*+b^*)}} where * denotes the c.c.? I...- Niles
- Thread
- Complex Complex conjugate Conjugate Function
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
C
Abstract Algebra- Conjugate Problem
Homework Statement Let G be a group of odd order, and a an element of G (not identity). Show that a and a^-1 are not conugate. Homework Equations The Attempt at a Solution The only hint I have is to consider action of G on itself by conjugation.- corky23
- Thread
- Abstract Abstract algebra Algebra Conjugate
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
1
MHB This suggests that both H and K are normal subgroups of L. What am I missing?
Question about matrix groups and conjugate subgroups? This question concerns the group of matrices L = { (a 0) (c d) : a,c,d ∈ R, ad =/ 0} under matrix multiplication, and its subgroups H = { (p 0, (p - q) q) : p,q ∈ R, pq =/ 0} and K = { (1 0, r 1) : r ∈ R}Show that one of H and K is a normal...- 11hannab
- Thread
- Conjugate Groups Matrix
- Replies: 1
- Forum: Linear and Abstract Algebra
-
L
Simplifying a cosine + cosine with conjugate denominators
Homework Statement -\frac{1}{2}[cos(\frac{\pi+\pi n}{\pi+\pi n}) + cos(\frac{\pi-\pi n}{\pi-\pi n})] Homework Equations cos(u)cos(v) = \frac{1}{2} cos(u+v)+cos(u-v) The Attempt at a Solution I am attempting to use the above trig function to simplify the first function, but I can't seem to...- luckyduck
- Thread
- Conjugate Cosine
- Replies: 4
- Forum: Precalculus Mathematics Homework Help
-
I
Complex conjugate as a Mobius transformation
Hi guys, I am having a very stupid problem. I can't figure out what Mobius transformation represents T(z)=z*, where z* is the complex conjugate of z. In my book we are learning about Mobius transformations and how they represent the group of automorphisms of the extended complex plane (Ʃ). [...- iLoveTopology
- Thread
- Complex Complex conjugate Conjugate Transformation
- Replies: 3
- Forum: Topology and Analysis
-
J
Proving Complex Conjugate is Real: Euler's Identity
Homework Statement So we are given \alphaexp(i\varpit) +\alpha*exp(-i\varpit) and are asked to prove the resulting equation is real. Homework Equations \alpha + \alpha* = 2Re(\alpha) and Euler's Identity The Attempt at a Solution I tried expanding out the exp's to cosines and isines but...- JPBenowitz
- Thread
- Complex Complex conjugate Conjugate
- Replies: 4
- Forum: Advanced Physics Homework Help