Derivative Definition and 1000 Threads
-
&
Lie derivative of tensor field with respect to Lie bracket
I'm trying to show that the lie derivative of a tensor field ##t## along a lie bracket ##[X,Y]## is given by \mathcal{L}_{[X,Y]}t=\mathcal{L}_{X}\mathcal{L}_{Y}t-\mathcal{L}_{Y}\mathcal{L}_{X}t but I'm not having much luck so far. I've tried expanding ##t## on a coordinate basis, such that...- "Don't panic!"
- Thread
- Bracket Derivative Differential geometry Field Lie bracket Lie derivative Tensor Tensor calculus
- Replies: 4
- Forum: Differential Geometry
-
W
Help understanding equation involving a partial derivative
Mod note: Moved from a homework section 1. Homework Statement N/A Homework Equations f(x + Δx,y) = f(x,y) + ∂f(x,y)/∂x*Δx The Attempt at a Solution Sorry this isn't really homework. We were given this equation today in order to derive the Taylor expansion formula in two variables and I'm not...- Woolyabyss
- Thread
- Derivative Partial Partial derivative
- Replies: 4
- Forum: Calculus
-
Why isn't Un the derivative of Sn in sequence and derivative?
I see that derivative of y with respect to x is just like the ratio of y over x. But, Why Un (the formula to find nth term) is not the derivative of Sn (the sum of sequence formula) ?? For example, 1 2 5 10 -> y = x2+1 +1... -
T
Are a vector and its derivative perpendicular at all times?
i'm dumb, sorry- TheCanadian
- Thread
- Derivative Perpendicular Vector
- Replies: 2
- Forum: Other Physics Topics
-
S
Does derivative of wave function equal zero at infinity?
I understand that ψ goes to zero as x goes to infinity. Is it also true that dψ/dx must go to zero as x goes to infinity?- Sturk200
- Thread
- Derivative Function Infinity Wave Wave function Zero
- Replies: 5
- Forum: Quantum Physics
-
P
Second derivative with parametric equations
http://tutorial.math.lamar.edu/Classes/CalcII/ParaTangent.aspx On this page the author makes it very clear that: $$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$ provided ##\frac{dx}{dt} \neq 0##. In example 4, ##\frac{dx}{dt} = -2t##, which is zero when ##t## is zero. In simplifying...- PFuser1232
- Thread
- Derivative Parametric Parametric equations Second derivative
- Replies: 2
- Forum: Calculus
-
A
Derivative of L-sqrt(L^2-x^2)How do I take the derivative of L-sqrt(L^2-x^2)?
Homework Statement I did an experiment to test the conservation of mechanical energy in an oscillating pendulum. As part of the analysis I had to find the pendulum's vertical position with time using the formula: y = L-sqrt(L^2-x^2) where L was the pendulum's length (L=1 m). Then for the next...- amanda.ka
- Thread
- Derivative
- Replies: 13
- Forum: Introductory Physics Homework Help
-
Derivative and function terminology
In mathematical parlance, we say "take the derivative of a function f" to indicate that we are computing a new function, which maps slopes, that derives from f. However, in physics, we say "take the derivative of velocity". However, velocity is a quantity, not a function. What does it mean to...- Mr Davis 97
- Thread
- Derivative Function Terminology
- Replies: 7
- Forum: Calculus
-
S
Partial Derivative of x^2 on Manifold (M,g)
How can I figure out ##\partial_\mu x^2## on the manifold ##(M,g)##? I thought that it should be ##2x_\mu##, but I think I'm wrong and the answer is ##2x_\mu+x^\nu x^\lambda \partial_\mu g_{\nu\lambda}##, right?! In particular, it seems to me, we can't write...- shooride
- Thread
- Covariant derivative Derivative Metric Partial Partial derivative
- Replies: 5
- Forum: Special and General Relativity
-
Directional Derivative of Ricci Scalar: Lev-Civita Connection?
I have a question about the directional derivative of the Ricci scalar along a Killing Vector Field. What conditions are necessary on the connection such that K^\alpha \nabla_\alpha R=0. Is the Levi-Civita connection necessary? I'm not sure about it but I believe since the Lie derivative is...- loops496
- Thread
- Connection Derivative General relativity Killing vector Levi-civita Ricci scalar Scalar
- Replies: 4
- Forum: Special and General Relativity
-
B
Evaluate the partial derivative of a matrix element
Homework Statement A determinant a is defined in the following manner ar * Ak = Σns=1 ars Aks = δkr a , where a=det(aij), ar , Ak , are rows of the coefficient matrix and cofactor matrix respectively. The second term in the equation is the expansion over the columns of both matrices, δkr is...- Biffinator87
- Thread
- Derivative Determinant Element Mathematical physics Matrix Partial Partial derivative Tangent vector Vector
- Replies: 2
- Forum: Advanced Physics Homework Help
-
M
Prove existence of open interval with non-zero derivative
I'm struggling to get started with the proof that an open interval D containing x0 exists such that f'(x) ≠ 0 for all x∈D, given f'(x0)≠0. It seems like it should be easy but I've been scratching around for an hour now and have gotten nowhere, could anyone give me some advice to help me along?- meriadoc
- Thread
- Derivative Existence Interval
- Replies: 9
- Forum: General Math
-
Is the Sign in the Covariant Derivative Important for Local Gauge Invariance?
Homework Statement Consider the fermionic part of the QCD Lagrangian: $$\mathcal{L} = \bar\psi (\mathrm{i} {\not{\!\partial}} - m) \psi \; ,$$ where I used a matrix notation to supress all the colour indices (i.e., ##\psi## is understood to be a three-component vector in colour space whilst...- Ravendark
- Thread
- Covariant Covariant derivative Derivative Gauge invariance Qcd Sign
- Replies: 2
- Forum: Advanced Physics Homework Help
-
Question on Mean Value Theorem & Intermediate Value Theorem
Homework Statement for ##0<\alpha,\beta<2##, prove that ##\int_0^4f(t)dt=2[\alpha f(\alpha)+\beta f(\beta)]## Homework Equations Mean value theorem: ##f'(c)=\frac{f(b)-f(a)}{b-a}## The Attempt at a Solution I got the answer for the question but I have made an assumption but I don't know if...- Titan97
- Thread
- Calculus Derivative Mean Mean value theorem Mvt Theorem Value
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
What is a derivative in the distribution sense?
Never mind. I got this one. Couldn't figure out how to delete the post though.- pellman
- Thread
- Derivative Distribution
- Replies: 2
- Forum: Topology and Analysis
-
N
Prove that the derivative of tan(2x) - cot(2x) equals....
Let f(x) = tan(2x) - cot(2x) defined on x∈]0,π/4[ Prove that derivative of f(x) is 16/1-cos(8x) What I did was: 2 * Sin^2(2x) + 2 * Cos^2(2x) / Cos^2(2x) + Sin^2(2x) If I factor the 2, I reach: 2 * (Sin^2(2x) + Cos^2(2x) / 1+cos(4x)/2 + 1-cos(4x)/22 * 1/ 1 = 2? What went wrong?- NooDota
- Thread
- Derivative
- Replies: 2
- Forum: General Math
-
J
Exterior derivative of hodge dual
Hello all, I'm having a minor annoyance in proving an identity. The identity is the following \star\text{d}\star A_p = \frac{(-)^{p(D-p+1)-1+t}}{(p-1)!}\nabla_\mu A^\mu_{\,\, \mu_1 \cdots \mu_{p-1}}\text{d}^\mu_1\wedge \cdots \wedge \text{d}^\mu_{p-1} I'm stuck at the first step of proving...- JorisL
- Thread
- Derivative Dual
- Replies: 10
- Forum: Special and General Relativity
-
Second functional derivative of fermion action
Homework Statement [/B] Consider the following action: $$\begin{align}S = \int \mathrm{d}^4 z \; \bar\psi_i(z) \, (\mathrm{i} {\not{\!\partial}} - m)_{ij} \, \psi_j(z)\end{align}$$ where ##\psi_i## is a Dirac spinor with Dirac index ##i## (summation convention for repeated indices). Now I would...- Ravendark
- Thread
- Derivative Fermion Functional Functional derivative Grassmann
- Replies: 6
- Forum: Advanced Physics Homework Help
-
N
Confused on these two derivative problems
Homework Statement a. k(t) = (sqrt(t+1))/(2t+1)b. y = (3^(x^2+1))(ln(2))The Attempt at a Solution For the first problem, I know I use the quotient rule for derivatives (L)(DH)-(H)(DL)/((L)^2) which would go to: ((2t+1)(1/(2sqrt(t+1)) - (sqrt(t+1))(2))/((2t+1)^2) I get stuck here, maybe it's...- Niaboc67
- Thread
- Confused Derivative
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
Y
Find the derivative of the function(chain rule)
Homework Statement Various values of the functions f(x) and g(x) and their derivatives are given in the table below. Find the derivative of f(x+g(x)) at x=0. at x=0 f(x)=5 f'(x)=2 g(x)=1 g'(x)=3 at x=1 f(x)=7 f'(x)=3 g(x)=-2 g'(x)=-5 2. Homework Equations Chain ruleThe Attempt at a Solution...- youngstudent16
- Thread
- Derivative
- Replies: 15
- Forum: Calculus and Beyond Homework Help
-
U
Total derivative involving rigid body motion of a surface
This stems from considering rigid body transformations, but is a general question about total derivatives. Something is probably missing in my understanding here. I had posted this to math.stackexchange, but did not receive any answers and someone suggested this forum might be more suitable. A... -
MHB 1st Derivative of Cauchy Integral formula
Hi - I know the final result for the n'th derivative, I am looking though at getting an expression for the 1st derivative of f(z). From $ f({z}_{0}) = \frac{1}{2\pi i} \oint_{c} \frac{f(z)}{z - {z}_{0}}dz $ we get $ \frac{f({z}_{0} + \delta {z}_{0}) -{f({z}_{0}}) }{\delta {z}_{0}} =...- ognik
- Thread
- Cauchy Derivative Formula Integral
- Replies: 2
- Forum: Topology and Analysis
-
N
Why Does (\partial_{\mu}\phi)^2 Equal (\partial_{\mu}\phi)(\partial^{\mu}\phi)?
I just came across this in a textbook: ## (\partial_{\mu}\phi)^2 = (\partial_{\mu}\phi)(\partial^{\mu}\phi) ## Can someone explain why this makes sense? Thanks.- noahcharris
- Thread
- Derivative Field
- Replies: 3
- Forum: General Math
-
Need Help Solving nth Derivative of e^ax*Sin(ax+b)
i have solved the following one but not sure...anyone give me the solve..i want to be sure.. nth derivative of {e^ax * Sin(ax+b)}- Tanny Nusrat
- Thread
- Derivative
- Replies: 4
- Forum: Calculus
-
How does the Kalman filter calculate derivatives?
Suppose we have a Kalman filter. We have a position sensor, for example GPS. We use the filter to estimate position. However in all examples I see higher derivatives in the state vector: speed, acceleration and sometimes jerk. There is no sensor that calculates these values directly, so they...- haael
- Thread
- Derivative Derivatives Filter Kalman filter
- Replies: 3
- Forum: General Math
-
D'Alembert operator is commute covariant derivative?
For example: [itex] D_α D_β D^β F_ab= D_β D^β D_α F_ab is true or not? Are there any books sources?- dhalilsim
- Thread
- Commute Covariant Covariant derivative D'alembert Derivative Operator
- Replies: 3
- Forum: Special and General Relativity
-
Z
What does 'velocity is derivative of distance' mean?
What does v equals dx/dt mean? I interpret v as: the limiting value as a vanishingly small value for time t (dt) goes to 0. Or lim as dt-->0 of dx/dt.- Zach Forney
- Thread
- Derivative Mean
- Replies: 13
- Forum: Mechanics
-
R
Help finding the derivative for Faraday's equation?
I need to find the derivative with respect to time of the magnetic flux (dΦB/dt). I have a time of .0085 seconds, and a magnetic flux of .0008 Wb. I am a little hazy on my calc skills.- radaballer
- Thread
- Derivative
- Replies: 1
- Forum: Electromagnetism
-
Deriving Commutation of Variation & Derivative Operators in EL Equation
I am trying to do go over the derivations for the principle of least action, and there seems to be an implicit assumption that I can't seem to justify. For the simple case of particles it is the following equality δ(dq/dt) = d(δq)/dt Where q is some coordinate, and δf is the first variation in...- hideelo
- Thread
- Commutation Derivative Euler Euler lagrange equation Lagrange Lagrange equation Operators Variation
- Replies: 2
- Forum: Classical Physics
-
S
Finding derivative of x^x using limit definition
I am trying to find the derivative of x^x using the limit definition and am unable to follow what I have read. Can someone help me understand why lim [(x+h)^h -1]/h as h ---> 0 = ln(x). This part of the derivatio- scottshannon
- Thread
- Definition Derivative Limit Limit definition
- Replies: 2
- Forum: Calculus
-
S
What is the partial derivative of f with respect to w?
Homework Statement Define f(x,y) = x+2y, w = x+y. What is ∂f / ∂w? Homework EquationsThe Attempt at a Solution f = w+y so: ∂f/∂w = ∂(w+y)/∂w = ∂w/∂w + ∂y/∂w = 1 + ∂y/∂w. But I'm really not sure if this is right and if it right so far, I can't figure out what ∂y/∂w should be...- slr77
- Thread
- Derivative Partial Partial derivative
- Replies: 17
- Forum: Calculus and Beyond Homework Help
-
B
Product rule for vector derivative
Say I have a position vector p = e(t) p(t) Where, in 2D, e(t) = (e1(t), e2(t)) and p(t) = (p1(t), p2(t))T And if I conveniently point the FIRST base vector of the frame at the particle, I can use: p(t) = (r1(t), 0)T I want the velocity, so I take v = d(e(t))/dt p(t) + e(t) d(p(t))/dt...- Bullwinckle
- Thread
- Derivative Product Product rule Vector
- Replies: 1
- Forum: Classical Physics
-
K
What Value of x Maximizes the Function y=axln(b/x)?
Homework Statement $$y=a\cdot x\cdot ln\left(\frac{b}{x}\right)$$ The derivative should be 0 (to maximize), what's x? Homework Equations $$(ln\:x)'=\frac{1}{x}$$ $$(x^a)'=ax^{(a-1)}$$ $$(uv)'=u'v+v'u$$ The Attempt at a Solution $$\dot y=a \left[ ln \left( \frac{b}{x} \right)-x\frac{x}{b}x^{-2}...- Karol
- Thread
- Derivative Ln
- Replies: 7
- Forum: Calculus and Beyond Homework Help
-
C
Definition of derivative - infinitesimal approach, help :)
Hi I'm reading Elementary calculus - an infinitesimal approach and just wan't to make sure my understanding of what dy, f'(x) and dx means is correct. I do understand the basic idea: You make the secant between 2 points on a graph approach one of the points and at this point you get the...- christian0710
- Thread
- Approach Definition Derivative Infinitesimal
- Replies: 40
- Forum: Calculus
-
F
Hamiltonian defined as 1st derivative
Why is Hamiltonian defined as 1st derivative with respect to time ? From the units of energy (kgm2s-2) I would expect it to be defined as 2nd derivative with respect to time. (I'm reading http://feynmanlectures.caltech.edu/III_11.html#Ch11-S2)- forcefield
- Thread
- Derivative Hamiltonian
- Replies: 10
- Forum: Quantum Physics
-
B
Derivative of the mixed metric tensor
So i am studying GR at the moment, and I've been trying to figure out what the derivative (not covarient) of the mixed metric tensor $$\delta^\mu_\nu$$ would be, since this tensor is just the identity matrix surely its derivative should be zero. Yet at the same time $$\delta^\mu_\nu =...- Brage
- Thread
- Derivative Metric Metric tensor Mixed Tensor
- Replies: 5
- Forum: Special and General Relativity
-
Can relative maximum and minimum exist when the derivative....
Can relative maximum and minimum points exist when a function is defined at say x=c, however the derivative does not exist or tends to infinity? Ie the graph of. F (x)= |x|, for x=c=o. If I am correct the relative minimum is at o, can it also be the abs minimum? I recalled the theorem by...- MidgetDwarf
- Thread
- Derivative Maximum Minimum Relative
- Replies: 4
- Forum: Calculus
-
E
Derivative of best approximation
Say that we have a continuous, differentiable function f(x) and we have found the best approximation (in the sense of the infinity norm) of f from some set of functions forming a finite dimensional vector space (say, polynomials of degree less than n or trigonometric polynomials of degree less...- ekkilop
- Thread
- Approximation Derivative
- Replies: 1
- Forum: General Math
-
Second Derivative of Circle Not a Constant?
Using the standard equation of a circle x^2 + y^2 = r^2, I took the first and second derivatives and obtained -x/y and -r^2/y^3 , respectively. I understand that the slope is going to be different at each point along the circle, but what does not make sense to me is that the rate of change of...- Joseph Nechleba
- Thread
- Circle Constant Derivative Second derivative
- Replies: 21
- Forum: Calculus
-
M
Rates associated calculus - derivative
Homework Statement Growth is observed for a cubic crystal. Initially the height of the cube is 1 cm . the surface of the cube increases at a rate of 6 cm2 / hour. Question: Calculate dh/dt Homework Equations ds/dt = ds/dh * dh/dt The Attempt at a Solution ds/dt = 6 cm2 / hour ds/dh = h*h =...- masterchiefo
- Thread
- Calculus Derivative
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
P
Is continuity of the second derivative necessary for the second derivative test?
According to this link: http://tutorial.math.lamar.edu/Classes/CalcI/ShapeofGraphPtII.aspx The second derivative test can only be applied if ##f''## is continuous in a region around ##c##. But according to this link...- PFuser1232
- Thread
- Derivative Second derivative Second derivative test Test
- Replies: 4
- Forum: Calculus
-
R
Evaluating a derivative by partial differentiation proof
Homework Statement Suppose we have an equation, ex + xy + x2 = 5 Find dy/dx Homework Equations Now I know all the linear differentiation stuff like product rule, chain rule etc. Also I know partial differentiation is differentiating one variable and keeping other one constant. The Attempt at...- Raghav Gupta
- Thread
- Derivative Differentiation Partial Partial differentiation Proof
- Replies: 18
- Forum: Calculus and Beyond Homework Help
-
E
Time derivative of 3D Spherical Coordinate
When we obtain the velocity vector for position vector (r, θ, φ) Why do we take the time derivative of the radial part in the 3D Spherical Coordinate system only? Don't we need to consider the polar angle and azimuthal angle part like (dr/dt, dθ/dt, dφ/dt)?- ebolaformula
- Thread
- 3d Coordinate Derivative Spherical Time Time derivative
- Replies: 6
- Forum: Classical Physics
-
N
Why Is the Derivative Uniqueness Proof Important?
Hello. In the proof of uniqueness of ( multi-variable ) derivative from Rudin, I am a little stuck on why the inequality holds. Rest of the proof after that is clear . -
C
Calculating Derivative of cos(xy)+ye^x Near (0,1) and Level Curve f(x,y)=f(0,1)
Homework Statement f(x,y)=cos(xy)+ye^{x} near (0,1), the level curve f(x,y)=f(0,1) can be described as y=g(x), calculate g'(0). Homework Equations N/A Answer is -1. The Attempt at a Solution If you do f(0,1)=cos((0)(1))+1=2, do you have to use linear approximation or some other method?- Cpt Qwark
- Thread
- Derivative
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
Derivative of angular momentum
Hi, friends! Let the quantity ##I\boldsymbol{\omega}## be given, where ##I## is an inertia matrix and ##\boldsymbol{\omega}## a column vector representing angular velocity; ##I\boldsymbol{\omega}## can be the angular momentum of a rigid body rotating around a static point or around its -even...- DavideGenoa
- Thread
- Angular Angular momentum Derivative Momentum
- Replies: 1
- Forum: Mechanics
-
A
Velocity Derivative of a Sinusoidal Wave (Counter-Intuitive)
What's the matter: So, I think I have some skills when it comes to differentiation after taking calculus 2 last semester, but when it starts to intertwine with physics, and interpreting physical phenomenon through equations, It appears I could use some help. Anyway, the problem that I got hung...- Alpha Scope
- Thread
- Derivative Sinusoidal Velocity Wave Waves
- Replies: 6
- Forum: Mechanics
-
R
Tension on a Rope Deflected by a Pulley: Differentials
Hi all, first post here. I'm a junior Physics/Math double major at UMass Amherst, playing with some problems over the summer. I'll get right into it. A rope with constant tension T is deflected through the angle 2\theta_{0} by a smooth, fixed pulley. What is the force on the pulley? It is...- russphelan
- Thread
- Derivative Differential Differentials Mechanics Newton 2nd law Pulley Rope Tension
- Replies: 1
- Forum: Introductory Physics Homework Help
-
'Wheel-like' Mathematics (Modulating Trig Functions?)
As part of a personal musicology project I found myself with the mathematical model of a geometry which utilizes the equation a*(a/b)sin(pi*x) The only problem with this is that I need to take the integral from -1/2 <= x <= 1/2, and according to Wolfram Alpha no such integral exists. I can...- Chrono G. Xay
- Thread
- Calculus Derivative Functions Integral Mathematics Trig Trig functions Trigonometery
- Replies: 34
- Forum: Calculus
-
S
Doubt in Partial derivative of complex variables
Today, I had a class on Complex analysis and my professor wrote this on the board : The Laplacian satisfies this equation : where, So, how did he arrive at that equation?- smart_worker
- Thread
- Complex Complex variables Derivative Doubt Partial Partial derivative Variables
- Replies: 5
- Forum: Calculus