Partial derivatives Definition and 417 Threads

  1. K

    Solve Partial Derivatives for Exact Diff Eq

    Homework Statement Determine if the following differential equation is exact. If it is exact solve it. Homework Equations \left(\frac{1}{t} + \frac{1}{t^{2}} - \frac{y}{t^{2} + y^{2}}\right)dt + \left(ye^{y} + \frac{t}{t^{2} + y^{2}}\right)dy = 0 The Attempt at a Solution I am a little...
  2. K

    Partial Derivatives and The Chain Rule

    Homework Statement The length l, width w, and height h of a box change with time. At a certain instant the dimensions are l = 7 m and w = h = 9 m, and l and w are increasing at a rate of 6 m/s while h is decreasing at a rate of 3 m/s. At that instant find the rates at which the following...
  3. J

    Partial Derivatives: Calculating fₓ and fᵧ (3,1)

    Hi everyone! I was wondering if someone could help me with the following question with partial derivatives. A function f: R^2 -> R is defined by f(x,y) = g(x-2y), where g: R-> R. If g'(1)= 3, calculate f subscript x (3,1) and f subscript y of (3,1). thanks!
  4. L

    Why Is V = 0 Ignored in Partial Derivatives?

    Suppose we are given : PV = nRT, where n and R are constants. We are told to find the partial derivative dP/dV. Am I allowed to do this : P = nRT/V Then differentiate this w.r.t. to V. I disregarded the fact that V = 0 makes the RHS undefined. # This question came from...
  5. O

    When Are Partial Derivatives Continuous?

    Hallo, What is the condition for partial derivatives to be continuous (if I have function f(x,y))? Thanks, Omri
  6. B

    What are some basic applications for Partial Derivatives?

    Would someone care to explain some basic applications of Partial Derivation in real-world situations? (Note: This is NOT a homework question; it's just a query.)
  7. T

    Integration by parts involving partial derivatives

    Homework Statement \int x \frac {\partial f} {\partial x} dx where f=f(x,t) Homework Equations \int u \, dv = uv - \int v \, du The Attempt at a Solution u = x so du = dx and dv = \frac {\partial f} {\partial x} dx so v = \int \frac {\partial f} {\partial x}...
  8. M

    Quick Partial Derivatives question - exp(x+z)

    Homework Statement Finding the partial derivative with respect to y, so del(f)/del(y) Homework Equations exp(x+z) - that is e^(x+z) The Attempt at a Solution I firstly thought this was just e^(x+z) but then i realized, shouldn't it be just 0? Since you're finding the partial...
  9. S

    Partial derivatives of f(x)*(f(y)+f(z))?

    Say you have something like f(x)*(f(y)+f(z)). What are the partial derivatives with respect to each variable? What rules are involved? And how would this differ from f(x)*(g(x)+h(x)).
  10. C

    Max/min with partial derivatives

    Homework Statement Show that f(x,y) = -(x^2 - 1)^2 - (yx^2-x-1)^2 has only two critical points, and both are maxima. The Attempt at a Solution Set partial derivatives (wrt x and y) to zero to find critical pts. f_x = -2(x^2 - 1)(2x) - 2(yx^2 - x - 1)(2xy - 1) = 0 f_y = -2(yx^2 - x -...
  11. P

    Partial Derivatives: Evaluating Quotients with Multiple Variables

    Hey everybody, first time poster although I've recently come across this forum and it's helped me discover the solution of many problems I've been having. I've seen to come to grips with most partial derivative problems I've come across, however, i still can't get correct solutions to problems...
  12. T

    Components using partial derivatives

    here is the question: http://i44.tinypic.com/xe53tc.gif here is the solution: http://i43.tinypic.com/2nuokfq.gif my first question regarding this whole thing is. why when the doing the partial derivative by "r" we don't multiply by minus the formula says (minus derivative) but all they do is...
  13. C

    Partial derivatives of implicitly defined functions

    Homework Statement If the equations x^2 - 2(y^2)(s^2)t - 2st^2 = 1 x^2 + 2(y^2)(s^2)t + 5st^2 = 1 define s and t as functions of x and y, find \partial^2 t / \partial y^2 The Attempt at a Solution Equating the two, we get 4y^2*s^2*t = -7s*t^2. My main problem is, as simple as this...
  14. Y

    How Can You Visualize Second Order Partial Derivatives?

    How do you visualize a second order partial derivative with respect to x and then y? fxy or fyx?(same thing, but how to visualize)
  15. F

    First and second order partial derivatives

    Hello, I was wondering if I could get some help with a question I have. Homework Statement We are asked to find the first and second order partial derivatives of f(x,y) = x^2 - y^2 - 4x^2/(y - 1)^2 (sorry, I don't know how to write this in latex). I am not really sure how to get started...
  16. L

    Partial Derivatives: Proving Homework Statement

    Homework Statement Given: \varphi(t) – differentiable function. z=z(x,y) – differentiable function. And there is the following equation: x^2 + y^2 + z^2 = \varphi (ax+by+cz) where a,b,c are constants, Prove that: (cy - bz)\cdot \frac {\partial z}{\partial x} +...
  17. J

    Estimating partial derivatives

    Homework Statement a metal plate is situated in the xy plane and occupies the rectangle 0<x<10 and 0<y<8 where x a y are measure in meters. The temperature oat the pooint x,y on the plate it T(x,y), where T is measured in degrees celcius. note the attached table a- estimate the values...
  18. L

    Partial Derivatives: Solving f = z(sqrt(x^2+y^2))

    I am stuck on the question, 'If f is a twice differentiable function of a single variable, find f = z(sqrt(x^2+y^2)) that satisfies d^2z/dx^2 +d^2z/dy^2 = x^2 +y^2 (ALL d's ARE MEANT TO BE PARTIAL DERIVATIVES) i know dz/dx=(dz/du).(du/dx) i can find du/dx but i don't know how to find dz/du
  19. W

    Partial Derivatives Homework: Find Sum of Second Partials

    Homework Statement Let u= (x^2 + y^2 + z^2)^\frac {-1} {2} Find \frac {\partial^2 u} {\partial x^2} + \frac {\partial^2 u} {\partial y^2} + \frac {\partial^2 u} {\partial z^2} Homework Equations The Attempt at a Solution \frac {\partial^2 u} {\partial x^2} = -(x^2 + y^2...
  20. J

    Partial derivatives with constrained variables

    Homework Statement x^2+y^2=r^2 y-rcos(pheta) find (partialy/partialr)subscribt phetal, find (partialy/partialpheta)subscribtx, and find (partialy/partial)subsribt pehta Homework Equations im not sure how to write this partial in chain rule form. i think the first one...
  21. O

    Partial Derivatives: Computing fxx and fyy in terms of fu, fv, fuu, fuv, fvv

    Homework Statement Let f = f (u,v) and u = x + y , v = x - y . Assume f to be twice differentiable and compute fxx and fyy f in terms of fu, fv, fuu, fuv fvv. The Attempt at a Solution First off, this is an assignment question. I really do hate cheating, but I need help with this...
  22. P

    Partial Derivatives: Solving x(dz/dx)+y(dz/dy)=2z(1+z)

    Homework Statement If z = 1 / (x^2+y^2-1) show that x(dz/dx)+y(dz/dy)=2z(1+z) 2. The attempt at a solution z = (x^2+y^2-1)^-1 dz/dx = -2x(x^2+y^2-1)^-2 = -2x * z^2 dz/dy = -2y(x^2+y^2-1)^-2 = -2y * z^2 (-2x^2 * z^2) - (2y^2 * z^2) = 2z(1+z) I can express x and y in something like z and x/y...
  23. B

    Partial Derivatives: Find Pdz/Pdu & Pdz/Pdv

    Homework Statement Let Z = 3x-2y x = u+v ln(u) and y = u^2-v ln(v) Homework Equations find Pdz/Pdu and Pdz/Pdv Pd (partial Derivative) The Attempt at a Solution Pdz/Pdx = 3 Pdz/Pdy = -2 Pdx/Pdu = v/u +1 Pdx/Pdv = ln(u) Pdy/Pdu = 2u Pdy/Pdv = -ln(v)-1...
  24. C

    Possible solutions: (0,0), (0,6), (4,2)

    Homework Statement Find all solutions (x,y) for which fx(x,y) = 0 = fy(x,y) if f(x,y) = 12xy - x^2 y - 2xy^2 Homework Equations The Attempt at a Solution f(x,y)=12xy-x^2y-2xy^2 fx(x,y)=12y-2xy-2y^2 fy(x,y)=12x-x^2-4xy 0=12y-2xy-2y^2 0=12x-x^2-4xy EQ 1: 2xy=12y-2y^2...
  25. A

    Problem with partial derivatives

    Homework Statement suppose that f(x,y)=f(y,x) for all (x,y)\inR^2 show that (for partial derivative ) Df/Dx (a,b)=Df/Dy(b,a) Homework Equations The Attempt at a Solution i don't know how to start can i do like this set g(x,y)=f(y,x) f o g (x,y) =f(x,y) then how to continue ?
  26. T

    Second order partial derivatives

    Homework Statement if z= f(x) + yg(x), what can you say about zyy explain? Homework Equations The Attempt at a Solution z= f(x,yy) zyy = d/dy (dz/dy) d(partial derivative)
  27. M

    Partial derivatives in thermodynamics

    in basic multivariate calculus, i never learned about differentiating functions of multiple variables which are also functions of each other. i.e. \frac{d}{d x_1} \left[ f(x_1, x_2, x_3) \right] where x_1 = g(x_2, x_3) studying thermodynamics right now, I'm encountering into...
  28. M

    Partial Derivatives: Finding fy for (e^0.16)/(1+e^-0.3y)

    Homework Statement (e^0.16)/(1+e^-0.3y) I am suppose to find the fy of this Homework Equations A bit trickier than the last prob i posted The Attempt at a Solution What I did: Since (e^0.16) is a constant, I left it just like that and took the derivative of e(-0.3y) my outcome...
  29. M

    Partial Derivatives: f(x,y)=e^(3x+9y) Find fsubxx

    Homework Statement f(x,y)=e^(3x+9y) find fsubxx Homework Equations The Attempt at a Solution I got e^(3x+9y)3, but the stupid web assign won't take it as an answer. I am pretty sure this is the correct answer. Am i wrong? Please help =).
  30. C

    Find the partial derivatives of the function

    The problem: f(x,y)=-\frac{-7x-2y}{9x+7y} find: fx(x,y) fy(x,y) The attempt: fx(x,y)=\frac{-7-2y}{9+7y} fy(x,y)=\frac{-7x-2}{9x+7} Questions: I'm not exactly sure how to find the partail derivative with a fraction like this one.
  31. E

    Find Partial Derivatives of z with Respect to u and v

    Homework Statement Find \frac{\partial z}{\partial u} and \frac{\partial z}{\partial v} using the chain rule. z = \arctan(\frac{x}{y}) , x=u^2+v^2 , y=u^2-v^2 Homework Equations The Attempt at a Solution \frac{\partial z}{\partial u} = \frac{4uv^2}{v^4 - 2u^2v^2 + u^4} *...
  32. K

    Partial derivatives with Gradient and the chain rule

    Homework Statement First problem: Let f(x,y) = x-y and u = vi+wj. In which direction does the function decrease and increase the most? And what u (all of them) satisfies Duf = 0 Second problem: Let z = f(x,y), where x = 2s+3t and y = 3s-2t. Determine \partial{z^2}/\partial{s^2}...
  33. D

    Even partial derivatives of a ratio

    Is there a general formula for the even partial derivatives of a ratio, where both A and B are functions of f? \frac{\partial ^{(2n)}}{\partial f^{(2n)}} \left( \frac{A}{B} \right) Thanks
  34. K

    Solving Partial Derivatives Homework: fx(x,y) and fy(x,y)

    Homework Statement Use the definition of partial deriviatives as limits to find fx(x,y) and fy(x,y). Homework Equations f(x,y) = \frac{x}{x + y^{2}} The Attempt at a Solution I don't think this is right because I think I should have an answer of 1. fx(x,y) = lim h-> 0...
  35. N

    Chain rule: partial derivatives transformation

    Hello. Let g(x,y) be a function that has second order partial derivatives. Transform the differential equation \frac{\delta ^{2}g}{\delta x^{2}}-\frac{\delta ^{2}g}{\delta y^{2}}=xyg by chaning to the new variables u=x^2-y^2 and v=xy The equation doesn't have to be solved. Okay, so this is...
  36. F

    What does this symbol mean (partial derivatives)

    Question : g(x,y) = x^3 - 3x^2 + 5xy - 7y^2 Verify that ∇g(0,0) = 0 I looked on wiki and it said the vector of partial derivatives, so my g(x,y) would become ∇g = (3x^2 - 6x + 5y, 5x -14y) so what do i do from here? i don't see what its asking, do i plug x and y as 0 and show I get...
  37. N

    Partial Derivatives of natural log

    Hey all. I'm having some problems with the partial derivatives of e. I understand the basics such as exy2. where I'm getting confused is with the following dz/dx=e(x+y) and dz/dx=1/ex+ey Can anyone help me out with understanding these??
  38. R

    Partial Derivatives: Finding Minimum Value of z

    Homework Statement The original problem: z=\sqrt{(x1-x)^2+(y1-y)^2}+\sqrt{(x2-x)^2+(y2-y)^2} Given that: ax+by+c=0, Find the minimum possible value of z. x1,y1,x2,y2,a,b and c are constants. The Attempt at a Solution I think I need to apply the partial derivative. I would get a...
  39. S

    Min max using partial derivatives

    (x^2 + y^2)*e^(y^2 - x^2) I am having trouble finding the critical points. Fx=2xe^(y^2-x^2)(1-x^2-y^2)=0 Fy=2ye^(y^2 - x^2)(1+x^2 +y^2)=0 or 0=x(1-x^2-y^2) 0=y(1+x^2+y^2) now, finding all the roots is giving me trouble. x and y obviously = 0, but I am unsure how to move forward to...
  40. R

    What are the Partial Derivatives at the Origin (0,0)?

    Homework Statement Evaluate the partial derivatives ∂f/∂x and ∂f/∂y at the origin (0,0), where: f(x,y) = ((xy)^3/2)/(x^2 + y^2) if (x,y) ≠ (0,0); and f(0,0) = 0. Homework Equations ∂f/∂x(x0,y0) = lim(h->0) [(f(x0+h, y0) - f(x0, y0)) / h] ∂f/∂y(x0,y0) = lim(h->0)...
  41. C

    Partial Derivatives: Find \frac{\partial y}{\partial x}

    Find \frac{\partial y}{\partial x} of 3sin (x^2 + y^2) = 5cos(x^2 - y^2) \partial y = 6ycos(x^2 + y^2) - 10ysin(x^2 - y^2) \partial x = 6xcos(x^2 + y^2) + 10xsin(x^2 - y^2) so I thought \frac{\partial y}{\partial x} = \frac{6ycos(x^2 + y^2) - 10ysin(x^2 - y^2)}{6xcos(x^2 + y^2) +...
  42. A

    Partial derivatives with Wave Function

    Homework Statement Knowing: y(x,t) = Acos(kx-ωt) Find the partial derivatives of: 1) dy/dt 2) dy/dx 3) d^2y/dt^2 4) d^2y/dx^2 Homework Equations The Attempt at a Solution These are the answers the actual answers: 1) dy/dt = ωAsin(kx-ωt) = v(x,t) of a particle 2) dy/dx =...
  43. J

    What is the Method for Finding Partial Derivatives with Extra Functions?

    Homework Statement If z = ax^2 + bxy + cy^2 and u = xy , find \left(\frac{\partial z}{\partial x}\right)_{y} and \left(\frac{\partial z}{\partial x}\right)_{u} . Homework Equations I have Euler's chain rule, the "splitter" and the "inverter" for dealing with partial derivatives...
  44. C

    Vector and partial derivatives

    Homework Statement Two charges one located at P at the position (x,y,z) and P' at the position (x',y',z') Let f= 1/R. Calculate Fx= partial derivative of f with respect to x. Calculate Fx'= partial derivative of f with respect to x'. There are sub question involving the same thing with...
  45. E

    Partial derivatives (related rates)

    Homework Statement Car A is going north, car B is going west, each are approaching an intersection on their respective highways. At an instant, car A is .3km from its intersection while car B is .4 km from it's intersection. Car A travels at 90km/h while car B travels 80km/h. Find the rate at...
  46. G

    Partial Derivatives and using the chain rule

    Homework Statement If V=x^{3}f(y/x) show that x^{2}Vxx + 2xyVxy + y^{2}Vyy = 6VThe Attempt at a Solution i would normally just use the chain rule to differenciate this with respect to x and then so on but the f(y/x) is throwing me. Do i just treat the f like a constant or is it a whole new...
  47. J

    Partial derivatives - textbook error?

    Now in my textbook it shows the following partial derivative solution: \frac{d}{dx}(3y^{4} + e^{x} sin y) = e^{x} sin y I thought since it's meant to be the partial derivative in terms of x that the y variable would be untouched. What's happening?
  48. P

    Need help taking partial derivatives

    Hello everyone, I am trying to take partial derivatives of the following equation and I am having difficulties. The partial derivatives are of Q w.r.t D, ΔP, ρ, and w. Any help would be much appreciated. Thank you. Paul
  49. C

    Understanding Gradient Vectors: Partial Derivatives & Gradients in Height Fields

    In the context of height fields, the geometric meaning of partial derivatives and gradients is more visible than usual. Suppose that near the point (a, b), f(x, y) is a plane (the above figure). There is a specific uphill and downhill direction. At right angles to this direction is a direction...
  50. F

    Predict sign of partial derivatives

    Homework Statement The temperature T at a location in the Northern Hemisphere depends on the longitude x, latitude y, and time t so we can write T=f(x,y,z); time is measured in hours from the beginning of January. Honolulu has longitude 158 degrees W, and latitude 21 degrees N. Suppose that...
Back
Top