research work

Initiating Research Work

 

 

It has been a while since the last installment of this series, so let’s recap on where you are right now. You should already made a choice on the physics subject area that you want to work in, and you have picked an advisor who will be (i) supervising your Ph.D research work (ii) the chairperson of your thesis committee.

We will now be in the ”meat” of the whole thing. This is where most physics students entering college have wanted to be – doing research-front work in an area that one has picked, and hopefully, has an acute interest in. Since this is such an important and major part of your Ph.D program, I will devote several chapters to this. I will also describe this from the point of view of someone who worked as an experimentalist, so some of the advice being given tend to be more applicable to experimentalists than to theorists. But in general, most of the generic events and steps tend to be quite similar.

The first thing you have to get rid of is the notion that doing research work is ”glamorous”, exciting, 30-thrills-a-minute type of work. Nothing could be further than that. A lot of time, you will be sitting on your rear end, waiting for something to either occur, or finished. Sometime it requires taking a graveyard shift, late at night. Often, you have to do physical labor work, crawling under things, doing repairs, etc. Or, you are sitting in front of a computer monitor at 3 AM trying to find the bug in your codes. I’m telling you all this now to make sure you do not go into this with the wrong set of misconceptions. While doing research work CAN be exciting and fascinating, most of the time, it can be downright boring. So be prepared for such things and adjust.

One of the things that one MUST do as soon as one selects an area of study is to figure out the STATE OF KNOWLEDGE of that field. You need to be aware of what is currently known, what is being actively studied, what are the ”hot news”, who are the BIG names, and who’s doing what to whom. What this means is that you may end up spending a considerable portion of your time doing nothing but reading tons and tons of papers and journals. Often, you start reading a paper, and then discover that you need to look at the reference being cited in that paper. So you get that reference and it turns out you need another paper or two being cited there! It’s a chain of events that can sometime be quite frustrating, but it is a necessary part of trying to be up to date on the state of knowledge in that field. I certainly know that when I started my Ph.D research work, I spent on average 30% of my time during the first 3 months or so reading everything I could get my hands on about the field that I’ve chosen.

You need to know the state of knowledge of the field for a number of reasons:

(i) you do not want to replicate what has already been done (unless you think there’s something more to be done and that somebody missed something)

(ii) you need to know not only what’s interesting, but what is important.

(iii) you need to be aware of what area is the ”hot” topic, and who is working in this topic. Something that is hot tends to get funding.

Your advisor may have a specific project in mind for you to work on, or you and him/her have already agreed on what you will do, but you still need a broader perspective on what is going on in the field that you have selected. So even though you have decided that you want to study tunnelling spectroscopy of superconductors for example, it doesn’t mean that you shouldn’t be paying attention to the progress in the field of superconductivity in general. You must start to be aware of the whole area of study that, more often than not, have a direct impact on your work.

So be prepared to do a lot of reading and catching up. Don’t be surprised if you end up spending up to half of your time doing nothing but reading journal papers. This is effort you have to put in to prepare you for the next step in your research work.

 

 

PhD Physics

Accelerator physics, photocathodes, field-enhancement. tunneling spectroscopy, superconductivity

1 reply

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply